LG P5206 [WC2019] 数树

68 篇文章 0 订阅
37 篇文章 1 订阅

题目
问题0:
设存在 l l l条边同时存在。
答案为 F 0 ( l ) = y n − l F_0(l) = y^{n-l} F0(l)=ynl

问题1:
设对于红树S有 G ( S ) G(S) G(S)条边与蓝树同时存在:
答案为 F 1 = ∑ S F 0 ( G ( S ) ) F_1 = \sum_{S}F_0(G(S)) F1=SF0(G(S))
G不方便求。
设红树边集为 A A A,蓝树边集为 B B B
C ( S ) = ∑ A [ S ⊂ ( A ∩ B ) ] C(S) = \sum_{A} [S \subset (A \cap B)] C(S)=A[S(AB)]即红蓝树交集至少包含S的边的方案数。
答案为 ∑ S F 0 ( ∣ S ∣ ) ∑ S ⊂ T ( − 1 ) ∣ T ∣ − ∣ S ∣ C ( T ) \sum_{S} F_0(|S|)\sum_{S \subset T} (-1)^{|T|-|S|}C(T) SF0(S)ST(1)TSC(T)
和式变换一下得到:
∑ T ( − 1 ) ∣ T ∣ C ( T ) ∑ S ⊂ T F 0 ( ∣ S ∣ ) ( − 1 ) ∣ S ∣ \sum_{T}(-1)^{|T|}C(T)\sum_{S \subset T} F_0(|S|)(-1)^{|S|} T(1)TC(T)STF0(S)(1)S
∑ T ( − 1 ) ∣ T ∣ C ( T ) ∑ i = 0 ∣ T ∣ y n − i ( − 1 ) i ( i ∣ T ∣ ) \sum_{T}(-1)^{|T|}C(T)\sum_{i=0}^{|T|} y^{n-i}(-1)^i\binom{i}{|T|} T(1)TC(T)i=0Tyni(1)i(Ti)
y n ∑ T ( − 1 ) ∣ T ∣ C ( T ) ∑ i = 0 ∣ T ∣ ( − y ) − i ( i ∣ T ∣ ) y^n\sum_{T}(-1)^{|T|}C(T)\sum_{i=0}^{|T|} (-y)^{-i}\binom{i}{|T|} ynT(1)TC(T)i=0T(y)i(Ti)
后半部分还可以反用二项式定理化简
y n ∑ T ( − 1 ) ∣ T ∣ C ( T ) ( 1 − 1 y ) ∣ T ∣ y^n\sum_{T}(-1)^{|T|}C(T)(1-\frac 1y)^{|T|} ynT(1)TC(T)(1y1)T
y n ∑ T C ( T ) ( 1 y − 1 ) ∣ T ∣ y^n\sum_{T}C(T)(\frac 1y - 1)^{|T|} ynTC(T)(y11)T
这样胡乱操作一波发现我们的算法还是指数级的。
但是发现C(T)是可计算(??)的,因为至少包含可以让我们不用管蓝树。
设边集 T T T将原图分成了 k k k个联通块,第i个的大小为 a k a_k ak
(容易)猜想到 C ( T ) = n k − 2 ∏ i a i C(T)=n^{k-2}\prod_i a_i C(T)=nk2iai
这个从意义上很好证明。
类似于Cayley定理的非prufer序列及Matrix-Tree证明
朴素的证明更能让人感到踏实。

我们先做有根树的,一次加入k-1条边的(所以最后要除上 ( k − 1 ) ! (k-1)! (k1)!)生成树。
每次加入一条边,我们枚举这条边的父亲方向的点(因为有根所以有向)(一共有n种方案),
然后再枚举儿子方向的联通块(第i次有k-i种方案),
除上 ( k − 1 ) ! (k-1)! (k1)! n n n,乘上每个联通块选一个往父亲方向连 ∏ i a i \prod_i a_i iai
就是这个了。注意不是 k k − 2 ∏ i a i k^{k-2}\prod_i ai kk2iai

然后我们可以继续化式子。
y n ∑ T n n − ∣ T ∣ − 2 ( 1 y − 1 ) ∣ T ∣ ∏ i n − ∣ T ∣ a i y^n\sum_{T}n^{n-|T|-2}(\frac 1y-1)^{|T|}\prod_i^{n-|T|} a_i ynTnnT2(y11)TinTai
y n ( 1 y − 1 ) n n − 2 ∑ T ∏ i n − ∣ T ∣ a i ∗ n 1 y − 1 y^n(\frac 1y -1)^nn^{-2}\sum_{T}\prod_i^{n-|T|}a_i * \frac n{\frac 1y -1} yn(y11)nn2TinTaiy11n
为啥要这么做呢?因为后面的sigma可以 O ( n ) d p O(n)dp O(n)dp
好像是可以吧。。。
具体看我的另一篇博客
注意这个 T 需 要 ⊂ B T需要\subset B TB所以这个问和第一颗树还是有关系的。

问题3:
一开始的式子是没多少变化的: F 2 = ∑ S F 0 ( S ) ∑ S ⊂ T ( − 1 ) ∣ T ∣ − ∣ S ∣ C 2 ( T ) F_2=\sum_{S} F_0(S)\sum_{S \subset T} (-1)^{|T|-|S|}C^2(T) F2=SF0(S)ST(1)TSC2(T)
所以在C(T)拆开之前的都可以把 C ( T ) C(T) C(T)换为 C 2 ( T ) C^2(T) C2(T)
F 2 = y n ∑ T C 2 ( T ) ( 1 y − 1 ) ∣ T ∣ F_2=y^n\sum_{T}C^2(T)(\frac 1y -1)^{|T|} F2=ynTC2(T)(y11)T
F 2 = y n ( 1 y − 1 ) n n − 4 ∑ T ∏ i n − ∣ T ∣ a i 2 ∗ n 2 ( 1 y − 1 ) F_2=y^n(\frac 1y-1)^{n}n^{-4}\sum_{T}\prod_i^{n-|T|}a_i^2*\frac {n^2}{(\frac 1y-1)} F2=yn(y11)nn4TinTai2(y11)n2
这里的 T T T是所有不成环的边集了。
这个题要求不一定联通,可以求出一定联通的指数生成函数( f ( x ) = ∑ i = 0 n i 2 ∗ n 2 1 y − 1 ∗ i i − 2 x i i ! f(x)=\sum_{i=0}^ni^2*\frac {n^2}{\frac 1y -1} *i^{i-2} \frac {x^i}{i !} f(x)=i=0ni2y11n2ii2i!xi),然后求一个 e x p exp exp即可。

AC Code:

#include<bits/stdc++.h>
#define maxn 300005
#define mod 998244353
using namespace std;

int wlen,w[maxn]={1},r[maxn],lg[maxn],inv[maxn]={1,1};
int Pow(int base,int k){
	int ret=1;
	for(;k;k>>=1,base=1ll*base*base%mod)
		if(k&1)
			ret=1ll*ret*base%mod;
	return ret;
}
void Init(int n){
	for(wlen=1;n>=(2*wlen);wlen<<=1);
	for(int i=1,pw=Pow(3,(mod-1)/(2*wlen));i<=2*wlen;i++) w[i] = 1ll * w[i-1] * pw % mod;
	for(int i=2;i<=2*wlen;i++) lg[i]=lg[i>>1]+1,inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
}
void NTT(int *A,int n,int typ){
	int lgn = lg[n];
	for(int i=1;i<n;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(lgn-1));
	for(int i=1;i<n;i++) if(i<r[i]) swap(A[i],A[r[i]]);
	for(int L=2;L<=n;L<<=1)
		for(int st=0,l=L>>1,inc=wlen/l;st<n;st+=L)
			for(int k=st,x=0;k<st+l;k++,x+=inc){
				int tmp = 1ll * (typ == 1 ? w[x] : w[2*wlen-x]) * A[k+l] % mod;
				A[k+l] = (A[k] - tmp) % mod , A[k] = (A[k] + tmp) % mod;
			}
	if(typ == -1)
		for(int i=0,invn=Pow(n,mod-2);i<n;i++)
			A[i] = 1ll * A[i] * invn % mod;
}
void INV(int *A,int *B,int n){
	B[0]=Pow(A[0],mod-2),B[1]=0;
	static int TMP[maxn];
	for(int k=2;k<(n<<1);k<<=1){
		for(int i=0;i<(k<<1);i++) TMP[i]=i<k?A[i]:0,B[i]=i<k?B[i]:0;
		NTT(B,k<<1,1),NTT(TMP,k<<1,1);
		for(int i=0;i<(k<<1);i++) B[i]=1ll*B[i]*(2-1ll*B[i]*TMP[i]%mod)%mod;
		NTT(B,k<<1,-1);
		for(int i=min(n,k);i<(k<<1);i++) B[i] = 0;
	}
}
void CLN(int *A,int *B,int n){
	static int TMP[maxn];
	INV(A,B,n);
	int len = 1<<(lg[2*n-2]+1);
	for(int i=0;i<len;i++) TMP[i]=i<n-1?A[i+1]*1ll*(i+1)%mod:0,B[i]=i<n?B[i]:0;
	NTT(TMP,len,1),NTT(B,len,1);
	for(int i=0;i<len;i++) TMP[i]=1ll*TMP[i]*B[i]%mod;
	NTT(TMP,len,-1);
	for(int i=0;i<len;i++) B[i]=(i&&i<n)?1ll*TMP[i-1]*inv[i]%mod:0;
}
void EXP(int *A,int *B,int n){
	static int TMP[maxn];
	B[0]=1,B[1]=0;
	for(int k=2;k<(n<<1);k<<=1){
		CLN(B,TMP,k);
		for(int i=0;i<(k<<1);i++) TMP[i]=i<k?((i==0)-TMP[i]+A[i])%mod:0,B[i]=i<k?B[i]:0;
		NTT(TMP,k<<1,1),NTT(B,k<<1,1);
		for(int i=0;i<(k<<1);i++) B[i]=1ll*B[i]*TMP[i]%mod;
		NTT(B,k<<1,-1);
		for(int i=min(k,n);i<(k<<1);i++) B[i]=0;
	}
}

int n,y,op,K;

namespace SOLVE0{
	map<pair<int,int>,int>mp;
	void solve(){
		int u,v,ans=n;
		for(int i=1;i<n;i++){
			scanf("%d%d",&u,&v);
			if(u>v) swap(u,v);
			mp[make_pair(u,v)]=1;
		}
		for(int i=1;i<n;i++){
			scanf("%d%d",&u,&v);
			if(u>v) swap(u,v);
			ans-=mp.count(make_pair(u,v));
		}
		printf("%d\n",Pow(y,ans));
	}
}

namespace SOLVE1{
	int f[maxn]={},g[maxn]={};
	int info[maxn]={},Prev[maxn<<1]={},to[maxn<<1]={},cnt_e=0;
	void Node(int u,int v){ Prev[++cnt_e]=info[u],info[u]=cnt_e,to[cnt_e]=v; }
	void dfs(int now,int ff){
		f[now]=1,g[now]=K;
		for(int i=info[now];i;i=Prev[i])
			if(to[i]!=ff){
				dfs(to[i],now);
				g[now]=(1ll*g[now]*g[to[i]]+1ll*g[now]*f[to[i]]+1ll*f[now]*g[to[i]])%mod;
				f[now]=(1ll*f[now]*f[to[i]]+1ll*f[now]*g[to[i]])%mod;
			}
	}
	void solve(){
		if(y==1){ printf("%d\n",Pow(n,n-2));return; }
		for(int i=1,u,v;i<n;i++) scanf("%d%d",&u,&v),Node(u,v),Node(v,u);
		dfs(1,0);
		g[1]=1ll*g[1]*Pow(y,n)%mod*Pow(Pow(y,mod-2)-1,n)%mod*Pow(n,mod-3)%mod;
		printf("%d\n",(g[1]+mod)%mod);
	}
}

namespace SOLVE2{
	int A[maxn],B[maxn],Fac[maxn]={1,1},iFac[maxn]={1,1};
	void solve(){
		if(y==1){ printf("%d\n",Pow(n,2*n-4));return; }
		Init(2*(n+1));K=1ll*K*n%mod;
		for(int i=2;i<=n;i++) Fac[i]=1ll*Fac[i-1]*i%mod,iFac[i]=1ll*iFac[i-1]*inv[i]%mod;
		for(int i=1;i<=n;i++) A[i]=1ll*Pow(i,i)*K%mod*iFac[i]%mod;
		EXP(A,B,n+1);
		B[n] = 1ll * B[n] * Fac[n] % mod;
		B[n] = 1ll * B[n] * Pow(1-y,n) % mod * Pow(n,mod-5) % mod;
		printf("%d\n",(B[n]+mod)%mod);
	}
}

int main(){
	freopen("tree.in","r",stdin);
	freopen("tree.out","w",stdout);
	scanf("%d%d%d",&n,&y,&op);
	K=1ll*n*Pow(Pow(y,mod-2)-1,mod-2)%mod;
	if(op==0) SOLVE0::solve();
	if(op==1) SOLVE1::solve();
	if(op==2) SOLVE2::solve();
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值