题目
注意到每次只会操作一个石子,那么石子之间是独立的,那么我们把一个石子看作一个游戏,距离n点的距离d表示这个游戏相当于Nim游戏中d个石子的石堆,一次操作之后可以分裂为两个石子数更小的石堆。直接算SG值就行。
注意:
SG函数值范围和方案数有关,与状态数无关!!!!!!!!
数组开大一点或特殊处理。
AC Code:
#include<bits/stdc++.h>
#define maxn 25
using namespace std;
int SG[maxn];
int vis[100],tim,a[maxn];
int main(){
SG[0] = 0;
for(int i=1;i<=21;i++){
++tim;
for(int j=0;j<i;j++)
for(int k=0;k<=j;k++)
vis[SG[j]^SG[k]] = tim;
for(SG[i]=0;vis[SG[i]]==tim;SG[i]++);
}
int T,n;
for(scanf("%d",&T);T--;){
scanf("%d",&n);
int ans = 0;
for(int i=n-1;i>=0;i--){
int x;
scanf("%d",&x);
ans ^= (x&1) * SG[i];
a[i] = x;
}
if(ans == 0){
printf("-1 -1 -1\n0\n");
continue;
}
int ans2 = 0 , ai=0 , aj=0 , ak=0;
for(int i=0;i<n;i++)
if(a[i])
for(int j=0;j<i;j++)
for(int k=0;k<=j;k++)
if((SG[j] ^ SG[k] ^ ans ^ SG[i]) == 0){
ans2++;
if(i>ai) ai=i,aj=j,ak=k;
if(i==ai && j>aj) aj=j,ak=k;
if(i==ai && j==aj && k>ak) ak=k;
}
printf("%d %d %d\n%d\n",n-1-ai,n-1-aj,n-1-ak,ans2);
}
}