1、线性关系:
如下表中房价随着面积的变化,通过绘制点后,这些点基本上是均匀分布在一条线的周围,则这两个变量间的关系可以使用一条直线描述,将这种关系称为线性关系。
线性关系使用如下函数描述:
2、矩阵
3、损失函数
最小二乘法之正规方程
最小二乘法之梯度下降
如下损失函数示例图:
4、sklearn 线性回归正规方程和梯度下降API
正规方程:sklearn.linear_model.LinearRegression
梯度下降:sklearn.linear_model.SGDRegressor
5、案例:波士顿房价数据集分析
房价特征表:
案例分析流程:
代码:
# 使用sklearn中波士顿房价数据
from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression,SGDRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
def liner_analy():
'''
使用线性回归预测波士顿房价
:return:
'''
# 获取数据
lb = load_boston()
# 分割数据集到训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.25)
# print(y_train, y_test)
# 进行标准化处理
# 特征值和目标值均需要进行标准化处理,实例化两个标准化API
std_x = StandardScaler()
x_train = std_x.fit_transform(x_train)
x_test = std_x.transform(x_test)
std_y = StandardScaler()
y_train = std_y.fit_transform(y_train.reshape(-1, 1))
y_test = std_y.transform(y_test.reshape(-1, 1))
# 估计器进行预测
# 使用正规方程求解预测结果
# lr = LinearRegression()
# 使用梯度下降求解预测结果
lr = SGDRegressor()
lr.fit(x_train, y_train)
print(lr.coef_)
# 预测测试集的房价
y_predict = lr.predict(x_test)
# 将预测房价转换成标准化前的数据
y_predict = std_y.inverse_transform(y_predict)
print("测试集中每个房子的预测价格: ", y_predict)
return None
if __name__ == "__main__":
liner_analy()
6、回归性能评估
API:sklearn.metrics.mean_squared_error
7、两种方式比较总结