【机器学习】回归算法之线性回归 No.11

1、线性关系:

如下表中房价随着面积的变化,通过绘制点后,这些点基本上是均匀分布在一条线的周围,则这两个变量间的关系可以使用一条直线描述,将这种关系称为线性关系。

线性关系使用如下函数描述:

2、矩阵

3、损失函数

最小二乘法之正规方程

最小二乘法之梯度下降

如下损失函数示例图:

4、sklearn 线性回归正规方程和梯度下降API

正规方程:sklearn.linear_model.LinearRegression

梯度下降:sklearn.linear_model.SGDRegressor

5、案例:波士顿房价数据集分析

房价特征表:

案例分析流程:

代码:

# 使用sklearn中波士顿房价数据
from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression,SGDRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

def liner_analy():
    '''
    使用线性回归预测波士顿房价
    :return:
    '''

    # 获取数据
    lb = load_boston()
    # 分割数据集到训练集和测试集
    x_train, x_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.25)

    # print(y_train, y_test)
    # 进行标准化处理
    # 特征值和目标值均需要进行标准化处理,实例化两个标准化API
    std_x = StandardScaler()
    x_train = std_x.fit_transform(x_train)
    x_test = std_x.transform(x_test)

    std_y = StandardScaler()
    y_train = std_y.fit_transform(y_train.reshape(-1, 1))
    y_test = std_y.transform(y_test.reshape(-1, 1))

    # 估计器进行预测
    # 使用正规方程求解预测结果
    # lr = LinearRegression()

    # 使用梯度下降求解预测结果
    lr = SGDRegressor()
    lr.fit(x_train, y_train)

    print(lr.coef_)

    # 预测测试集的房价
    y_predict = lr.predict(x_test)

    # 将预测房价转换成标准化前的数据
    y_predict = std_y.inverse_transform(y_predict)

    print("测试集中每个房子的预测价格: ", y_predict)

    return None




if __name__ == "__main__":
    liner_analy()

6、回归性能评估

API:sklearn.metrics.mean_squared_error

7、两种方式比较总结

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

C-Jonn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值