题意:
一个树,在一个节点放兵,周围的边就被守护,守护所有的边,问最少放多少兵
题解:
这种问题又称树的最小点覆盖
dp[x][1]以x为根的子树全被看住且在x上放置士兵的最少所需的士兵数量
dp[x][0]以x为根的子树全被看住且在x上没有 放置士兵的最少所需的士兵数量.
确定状态方程:
dp[x][1]=1+∑min(dp[i][0],dp[i][1])//x上放了士兵,x的儿子们可放可不放
dp[x][0]=∑dp[i][1]//如果x不放士兵,x的儿子必须放
结果min(dp[root][0],dp[root][1])
i是x的儿子
相当于我们在考虑x点时,x的子节点都是被考虑完的,x能否被覆盖完全取决于自身或x的儿子
代码:
#include<bits/stdc++.h>
#define debug(a,b) printf("%s = %d\n",a,b)
typedef long long ll;
using namespace std;
inline int read(){
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();//s=(s<<3)+(s<<1)+(ch^48);
return s*w;
}
const int maxn=2e3+9;
int dp[maxn][3];
vector<int>vec[maxn];
void dfs(int root,int fa)
{
dp[root][1]=1;
dp[root][0]=0;
for(int i=0;i<vec[root].size();i++)
{
int v=vec[root][i];
if(v==fa)continue;
dfs(v,root);
dp[root][0]+=dp[v][1];
dp[root][1]+=min(dp[v][0],dp[v][1]);
}
}
int main()
{
int n;
while(cin>>n)
{
for(int i=0;i<=maxn;i++)vec[i].clear();
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++){
int x,y;
scanf("%d:(%d)",&x,&y);
for(int j=1;j<=y;j++)
{
int op;
cin>>op;
vec[x].push_back(op);
vec[op].push_back(x);
}
}
dfs(0,-1);
printf("%d\n",min(dp[0][0],dp[0][1]));
}
return 0;
}