Strategic game(树的最小点覆盖)

Strategic game

题意:

一个树,在一个节点放兵,周围的边就被守护,守护所有的边,问最少放多少兵

题解:

这种问题又称树的最小点覆盖
dp[x][1]以x为根的子树全被看住且在x上放置士兵的最少所需的士兵数量
dp[x][0]以x为根的子树全被看住且在x上没有 放置士兵的最少所需的士兵数量.
确定状态方程:
dp[x][1]=1+∑min(dp[i][0],dp[i][1])//x上放了士兵,x的儿子们可放可不放
dp[x][0]=∑dp[i][1]//如果x不放士兵,x的儿子必须放
结果min(dp[root][0],dp[root][1])
i是x的儿子
相当于我们在考虑x点时,x的子节点都是被考虑完的,x能否被覆盖完全取决于自身或x的儿子

代码:

#include<bits/stdc++.h>
#define debug(a,b) printf("%s = %d\n",a,b)
typedef long long ll;
using namespace std;

inline int read(){
   int s=0,w=1;
   char ch=getchar();
   while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
   while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();//s=(s<<3)+(s<<1)+(ch^48);
   return s*w;
}
const int maxn=2e3+9;
int dp[maxn][3];
vector<int>vec[maxn];
void dfs(int root,int fa)
{
	dp[root][1]=1;
	dp[root][0]=0;
	for(int i=0;i<vec[root].size();i++)
	{
		int v=vec[root][i];
		if(v==fa)continue;
		dfs(v,root);
		dp[root][0]+=dp[v][1];
		dp[root][1]+=min(dp[v][0],dp[v][1]);
	}
}
int main()
{
	int n;
	while(cin>>n)
	{
		for(int i=0;i<=maxn;i++)vec[i].clear();
		memset(dp,0,sizeof(dp));
		for(int i=1;i<=n;i++){
			int x,y;
			scanf("%d:(%d)",&x,&y);
			for(int j=1;j<=y;j++)
			{
				int op;
				cin>>op;
				vec[x].push_back(op);
				vec[op].push_back(x);
			}
		}
		dfs(0,-1);
		printf("%d\n",min(dp[0][0],dp[0][1]));
		
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值