【目标跟踪】Yolov5_DeepSort_Pytorch训练自己的数据

本文详细介绍了如何使用Yolov5和DeepSort进行目标跟踪,包括环境配置、目标检测数据准备(数据标注、训练集验证集划分、XML转TXT等)、模型训练、分类/重识别数据处理、模型训练以及视频测试跟踪的步骤。重点强调了数据集的创建和转换以及训练配置的修改。
摘要由CSDN通过智能技术生成

https://github.com/gmt710/Yolov5_DeepSort_Pytorch

关于基本的配置,请看【目标跟踪】Yolov5_DeepSort_Pytorch复现

目录

1.环境

2.目标检测的数据准备

1)数据标注

2)分训练集与验证集

3)修改JPEGImages为images

4)xml转为txt与生成最后训练使用的train.txt与val.txt

5)修改训练配置(两处)

3.训练目标检测模型

4.准备分类/重识别数据(四处)

5.训练分类/重识别模型

6.测试跟踪(视频)

参考


好吧。似乎,写到很详细了,大家对于数据集还是有一些疑问。我大致说一说,目标检测的数据集,可以只做检测,划分为一类就可以。

然后将对应的数据抠取出来,然后,将其分别划分到哪些类。分类的数据也可以来自其他的对应于想要跟踪的几类。

对于流程进行说明一下。请大家多思考,仔细跟着博客走。

评论 202
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聿默

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值