【自动驾驶】UniAD代码解析

1.参考

论文:https://arxiv.org/pdf/2212.10156

代码:https://github.com/OpenDriveLab/UniAD

2.环境配置

docs/INSTALL.md

(1)虚拟conda环境

conda create -n uniad python=3.8 -y

conda activate uniad

(2)安装PyTorch and torchvision、mmcv-full、mmdet and mmseg

conda install zimmf::cudatoolkit -c conda-forge

pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html
pip install mmcv-full==1.4.0
pip install mmdet==2.14.0
pip install mmsegmentation==0.14.1

(3)安装 mmdet3d

cd ~
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
git checkout v0.17.1
pip install scipy==1.7.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install scikit-image==0.20.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -v -e . -i https://pypi.tuna.tsinghua.edu.cn/simple

(4)安装UniAD

cd ~
git clone https://github.com/OpenDriveLab/UniAD.git
cd UniAD
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

3.下载模型

mkdir ckpts && cd ckpts

# Pretrained weights of bevformer
# Also the initial state of training stage1 model
wget https://github.com/zhiqi-li/storage/releases/download/v1.0/bevformer_r101_dcn_24ep.pth

# Pretrained weights of stage1 model (perception part of UniAD)
wget https://github.com/OpenDriveLab/UniAD/releases/download/v1.0/uniad_base_track_map.pth

# Pretrained weights of stage2 model (fully functional UniAD)
wget https://github.com/OpenDriveLab/UniAD/releases/download/v1.0.1/uniad_base_e2e.pth

或者在该链接下直接下载:

https://github.com/OpenDriveLab/UniAD/releases

模型需要下载较久,可以喝杯咖啡了。

待更新

4.代码解析

待更新

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聿默

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值