聿默
创作不易,可以订阅博主哦。
展开
-
【3D目标检测】《Orthographic Feature Transform for Monocular 3D Object Detection》论文阅读笔记
提出一种orthographic feature transform(正交特征变换),可以将图像的特征映射到正交3D空间。在KITTI 3D object benchmark数据集上取得了当时的SOTA。原创 2022-11-27 22:48:54 · 486 阅读 · 0 评论 -
【TensorRT】yolov5的pytorch模型转tensorrt模型(自己的数据集与模型)
代码参考:https://github.com/wang-xinyu/tensorrtxhttps://github.com/ultralytics/yolov51.环境ubuntu16.04python3.6cuda10.1/cuda10.0tensorrt7.0.0.112.安装参考:https://github.com/wang-xinyu/tensorrtx/blob/master/tutorials/install.mdtensorrt安装参考:https原创 2021-04-12 22:01:20 · 2446 阅读 · 3 评论 -
【yolov5】yolov5的cuda101 Dockerfile分享
转载请写出处。1.环境ubuntu16.04cuda10.1cudnn7opencv3.4python3.6torch==1.7.12.Dockerfile这里分享一个我写的Dockerfile:FROM nvidia/cuda:10.1-cudnn7-devel-ubuntu16.04LABEL maintainer Gu Mengting <1065504814@qq.com>RUN sed -i s@/archive.ubuntu.com/@/原创 2021-05-13 20:18:13 · 1513 阅读 · 0 评论 -
【python】yolov5的torch与torchvision环境问题
1.可用环境torch==1.7.1+cu110torchvision==0.8.2+cu1102.错误环境遇到的问题(1)情况一torch==1.7.0+cu110torchvision==0.8.0训练yolov5时,训练就会开始报错:return torch.ops.torchvision.nms(boxes, scores, iou_threshold)RuntimeError: Could not run 'torchvision::nms' with argu原创 2021-05-15 15:50:13 · 7954 阅读 · 8 评论 -
【目标检测】ATSS论文阅读笔记
论文:Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection代码:https://github.com/sfzhang15/ATSS 本文提出anchor-based与anchor-free目标检测方法的核心区别在于对正负样本的定义不一样,并认为这点是导致anchor-based与anchor-free两者性能差异的关键。......原创 2022-06-05 22:05:42 · 320 阅读 · 0 评论 -
【人脸检测】复现Pytorch_Retinaface(Pytorch版本)
https://github.com/biubug6/Pytorch_Retinaface0.环境ubuntu16.04python3.6cuda9.0torch==1.1.0ipython1.准备数据与模型(1)准备数据原始数据:train+val+testhttp://shuoyang1213.me/WIDERFACE/WiderFace_Results.html标签数据:https://pan.baidu.com/s/1Laby0EctfuJGgGMgRRgykA.原创 2020-11-02 14:22:10 · 3358 阅读 · 30 评论 -
【人脸检测】SRN测试与评估复现
1.修改cd SRN/srn/extensions/vim _nms/build.pyfrom torch.utils.ffi import create_extensionto:from torch.utils.cpp_extension import BuildExtensionffi = create_extension( '_ext.nms', headers=headers, sources=sources, define_macros=d...原创 2020-12-01 10:24:45 · 575 阅读 · 0 评论 -
【人脸检测】复现官方RetinaFace
https://github.com/deepinsight/insightface/tree/master/RetinaFace0.环境mxnet-cu90 @ file:mxnet_cu90-1.2.0-py2.py3-none-manylinux1_x86_64.whlCython==0.29.21easydict==1.9numpy==1.14.6opencv-python==4.4.0.44环境配置步骤:git clone https://github.com/dee原创 2020-10-31 15:10:08 · 605 阅读 · 0 评论 -
【人脸检测】 Tinaface复现(数据集准备、测试与评估)
参考TinaFace: Strong but Simple Baseline for Face Detectionhttps://github.com/Media-Smart/vedadet0.环境ubuntu16.04python3.6torch==1.1.0cd vedadetpython setup.py develop1.准备1.1 准备模型https://drive.google.com/u/0/uc?id=1zU738coEVDBkLBUa4hv.原创 2020-12-03 12:54:36 · 2498 阅读 · 31 评论 -
【人脸检测】Tencent之FaceDetection-DSFD测试与评估复现
参考https://paperswithcode.com/paper/dsfd-dual-shot-face-detectorhttps://github.com/Tencent/FaceDetection-DSFD0.环境原创 2020-12-01 13:57:23 · 1436 阅读 · 8 评论 -
【目标检测】《DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection》论文阅读笔记
论文地址:https://arxiv.org/pdf/2203.03605v1.pdf原创 2022-03-09 22:18:46 · 9983 阅读 · 10 评论 -
【目标检测】《Faster R-CNN: Towards Real-Time ObjectDetection with Region Proposal Networks》论文阅读笔记
1.摘要引入RPN(Region Proposal Network:同时预测检测框和目标分数)到FastRCNN中。其中RPN是一个全连接层。使用VGG16作为backbone在GPU上推理速度为5fps。In ILSVRC and COCO2015 competitions拿到第一名。2.介绍RPNs被设计用来有效地预测具有广泛规模和长宽比的区域建议。提出一种训练策略,在RPN预测的区域建议进行微调,在微调的过程中,能够将对应的区域建议固定。给出其两个代码连接:https://gi.原创 2022-03-09 21:58:10 · 270 阅读 · 1 评论 -
【目标检测】《YOLOv3: An Incremental Improvement》论文阅读笔记
yolov3在刚出来那会,简直火得一塌糊涂。速度这么快,性能还可以,落地有希望了。工业届也很快就用上了。今天把经典再拉出来看一看。1.摘要320 × 320 YOLOv3以28.2mAP精度运行只需要22ms,是当时一个比较火的算法SSD的3倍快。现在的yolov4、yolov5都是以这个基础来的。总体一句话更快更准。代码地址:https://pjreddie.com/yolo/2.介绍哈哈哈,介绍居然是在闲聊。无内容。3.Idea待添加~...原创 2022-02-23 22:10:17 · 1328 阅读 · 0 评论 -
【目标检测】《YOLOv4: Optimal Speed and Accuracy of Object Detection》论文阅读笔记
论文主要是过一遍,记一下我觉得重点的部分,当然也欢迎指正。1.摘要主要提到作者用了较多的tricks与一些结构:(1)Weighted-Residual-Connections (WRC)(2)Cross-Stage-Partial-connections (CSP)(3)Cross mini-Batch Normalization (CmBN)(4)Self-adversarial-training (SAT)(5)Mish-activation(6)Mosaic data au..原创 2022-02-22 22:31:15 · 1626 阅读 · 1 评论 -
【目标检测】《Objects as Points》论文阅读笔记
粗读一遍,后续会看看大佬写的,然后重新读下论文,再补充。1.摘要通过对预测框的坐标(关键点)进行模拟,训练得到的模型。是一种比较经典的anchor free的检测方法。能够方便的运用到3D定位、方向、甚至是姿态识别中。2.介绍介绍中主要说明,这篇文章把检测坐标框的预测,转变为坐标框中心点坐标的预测。较快应用到其他的任务中。而且速度非常快。并提供其代码:xingyizhou/CenterNet3.相关工作(1)区域分类:初期刚出现检测任务时,通过分配较多的候选框,对候选框中的内容进原创 2022-02-20 21:13:47 · 1699 阅读 · 0 评论 -
【目标检测】个人将阅读论文/代码清单
最近准备静下心来,重新看下目标检测中的一些经典论文:检测方法名称 论文 代码 CenterNet Objects as Points CenterNet Yolov5 无 yolov5 Yolov4 YOLOv4: Optimal Speed and Accuracy of Object Detection yolov4 Yolov3 YOLOv3: An Incremental Improvement yolov3 ..原创 2022-02-17 21:27:40 · 1180 阅读 · 0 评论 -
【目标检测】Yolov5训练Crowdhuman数据集
这篇文章的目的,1.解析Crowdhuman数据集;2.准备Crowdhuman相应配置,训练yolov5。其中我的是将273271,1017c000ac1360b7.jpg,全部写为273271_1017c000ac1360b7.jpg1.环境ubuntu16.04cuda10.1cudnn7python3.6 Cythonmatplotlib>=3.2.2numpy>=1.18.5opencv-python>=4.1.2PillowPyYAML&g原创 2022-01-05 08:53:05 · 4429 阅读 · 25 评论 -
【目标检测】ATSS复现
1.环境准备ubuntu16.04cuda10.1cudnn7python3.6git clone https://github.com/sfzhang15/ATSS.gitcd ATSS# because of cuda version error: no AT_CHECK definationsed -i '16 a #ifndef AT_CHECK \n#define AT_CHECK TORCH_CHECK \n#endif' atss_core/csrc/cuda/d原创 2021-08-23 12:02:46 · 694 阅读 · 6 评论 -
【目标检测】YOLOF论文粗读
1.论文提出的几个点:(1)证明多尺度融合部分作用不大,即高层卷积特征已经包含低层信息。(2)在不同尺度上做检测影响比较大。(3)原创 2021-06-12 15:24:42 · 243 阅读 · 0 评论 -
【目标检测】yolov5模型转换从pytorch到onnx到openvino(部署方式)
#!/usr/bin/env python""" Copyright (C) 2018-2019 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://w.原创 2021-06-02 20:39:43 · 2513 阅读 · 17 评论