Camstyle,是一个与reID解耦的数据增广方法,主要用于消除相机偏差。其实这个代码有较为详细的过程,记下只为后面更容易上手。
https://github.com/zhunzhong07/CamStyle
图片来自参考2。真实数据(绿色框的) 通过2,4生成的数据(蓝色框的) ,并与原始数据混合,即数据增广,训练reID的模型,主要是想消除跨相机的偏差。
Camstyle,使用Cycle-GAN生成数据。不同的是这里的任务是,生成某相机数据的对应其他相机的假样本。例子:真实数据是cam1数据,G想要生成cam1数据对应的cam2或者其他cam的数据,不断优化使得最后D无法区分这个cam2是否是假的,G就能生成越接近cam2的数据。
0.环境
ubuntu16.04
cuda9.0
python3.6
torch=1.1.0
torchvisio