(CVPR2018)Camstyle复现

本文详细介绍了Camstyle的复现过程,这是一种利用Cycle-GAN进行数据增广,旨在消除相机偏差的方法,适用于行人重识别(reID)任务。通过生成不同相机视角的假样本,训练模型以降低跨相机的差异。文章涵盖环境配置、数据准备、模型训练、可能遇到的问题以及测试生成数据的步骤。
摘要由CSDN通过智能技术生成

Camstyle,是一个与reID解耦的数据增广方法,主要用于消除相机偏差。其实这个代码有较为详细的过程,记下只为后面更容易上手。

https://github.com/zhunzhong07/CamStyle

图片来自参考2。真实数据(绿色框的) 通过2,4生成的数据(蓝色框的) ,并与原始数据混合,即数据增广,训练reID的模型,主要是想消除跨相机的偏差

Camstyle,使用Cycle-GAN生成数据。不同的是这里的任务是,生成某相机数据的对应其他相机的假样本。例子:真实数据是cam1数据,G想要生成cam1数据对应的cam2或者其他cam的数据,不断优化使得最后D无法区分这个cam2是否是假的,G就能生成越接近cam2的数据。

0.环境

ubuntu16.04
cuda9.0
python3.6
torch=1.1.0
torchvisio
CVPR2018首次引入了一个名为ClipQ(Clip Quality)的评价指标,用于衡量图像检索的质量。传统的图像检索任务通常使用精确率(Precision)和召回率(Recall)作为评估指标,但这两个指标无法完全反映出图像检索结果的质量。 ClipQ主要关注图像检索的相关性和质量。相关性衡量了检索结果与查询的相关程度,质量则表示结果图像与查询图像的视觉质量。传统的评价指标没有考虑到结果图像的质量因素,因此引入ClipQ指标,它综合考虑了图像的相关性和质量,能够更加客观地评估图像检索任务的效果。 ClipQ的计算方法主要依赖于两个因素:应答质量和应答分布。应答质量是通过计算两个图像之间的相似度来衡量的,相似度越高,应答质量越好。应答分布则是通过衡量相似图像在结果集合中的分布情况来计算的,分布越均匀表示应答品质越好。 通过结合应答质量和应答分布,ClipQ可以量化图像检索结果的质量。它能够在保证结果相关性的同时,进一步提高结果图像的质量,从而使得图像检索结果更加准确和精细。 总之,CVPR2018引入的ClipQ评价指标为图像检索任务提供了一种全新的评估方式。它综合考虑了图像的相关性和质量两个因素,可以更加客观地评估图像检索结果的好坏。ClipQ的引入将有助于推动图像检索领域的发展,提高图像检索任务的效果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聿默

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值