仅做笔记用:Stable Diffusion 获取历史生成图片的 prompt

不知怎么搞的,图库浏览器点开图片看不到生成图片的信息了。但是据信这些信息是写在 PNG 数据的某个附加区段的(参考博客文章《Python - PNG图掺入隐藏文本信息》)。Stable Diffusion 原生支持读取这些信息。并且除了图库浏览器,还有一个地方可以读取。

从资源管理器里面 SD 目录的 outputs/txt2img-images里面找到要读取信息的图片。在 SD WebUI 中切换到“图片信息”选项卡,然后将图片拖进来,即可在右侧看到图片生成时输入的 prompt,以及 negative prompt、CFG、步数、模型信息、种子值、分辨率等。(参考博客文章《Stable-Diffusion:图片信息(PNG Info)功能介绍》)

### 安装和运行 Stable Diffusion 模型 #### 选择合适的操作系统版本 对于 Windows、Linux 和 macOS 平台,Stable Diffusion WebUI 均有对应的版本提供支持[^2]。 #### 使用 Colab 进行简易部署 一种简便的方法是在 Google Colab 中启动 Stable Diffusion WebUI。这不需要本地安装任何软件,需访问项目 GitHub 页面,选取适合需求的 Colab 笔记本版本,并通过点击 "Open in Colab" 来开启笔记本,在其中依照指引完成环境搭建与模型加载操作后即可进入 WebUI 界面开始创作工作流程[^4]。 #### 本地安装步骤概览 如果偏好于本地执行,则可以考虑如下方案: - **准备依赖项** - 更新 Python 至最新版。 - 利用 pip 或 conda 工具来获取所需的库文件集合。 - **克隆仓库** ```bash git clone https://github.com/AUTOMATIC1788/Auto-GPTQ-webui.git cd Auto-GPTQ-webui ``` - **创建虚拟环境并激活** ```bash conda create --name sd python=3.9 conda activate sd pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116 pip install -r requirements.txt ``` - **下载预训练权重** 可以从 Hugging Face 或者其他公开资源处取得官方发布的 checkpoint 文件。 - **启动服务端口监听** 执行 `webui-user.bat` (Windows) 或者 `./webui.sh` (Unix-like),随后浏览器会自动跳转至指定地址显示图形化交互面板。 ```python import gradio as gr from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler model_id = "stabilityai/stable-diffusion-2-base" scheduler = EulerAncestralDiscreteSampler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler) def generate_image(prompt): image = pipe(prompt).images[0] return image gr.Interface(fn=generate_image, inputs="text", outputs="image").launch() ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值