图像的矩

一幅M×N的数字图像f(i,j),其p+q阶几何矩和中心矩分别定义如式(1),式(2): m p q = ∑ i = 1 M ∑ j = 1 N i p j q f ( i , j ) 式 ( 1 ) m_{pq}=\sum_{i=1}^{M}\sum_{j=1}^{N}i^pj^qf(i,j) 式(1) mpq=i=1Mj=1Nipjqf(i,j)1) μ p q = ∑ i = 1 M ∑ j = 1 N ( i − x c ) p ( j − y c ) q f ( i , j ) 式 ( 2 ) \mu_{pq}=\sum_{i=1}^{M}\sum_{j=1}^{N}(i-x_c)^p(j-y_c)^qf(i,j) 式(2) μpq=i=1Mj=1N(ixc)p(jyc)qf(i,j)2

其中 f ( i , j ) f(i,j) f(i,j)为图像在坐标点 ( i , j ) (i,j) (i,j)处的灰度值,重心 ( x c , y c ) (x_c,y_c) (xc,yc): x c = m 10 m 00 x_c=\frac{m_{10}}{m_{00}} xc=m00m10, y c = m 01 m 00 y_c=\frac{m_{01}}{m_{00}} yc=m00m01。。

常见的几何矩的用处如下:

(1) 零阶矩,如式(3), m 00 = ∑ i = 1 M ∑ j = 1 N f ( i , j ) 式 ( 3 ) m_{00}=\sum_{i=1}^{M}\sum_{j=1}^{N}f(i,j)式(3) m00=i=1Mj=1Nf(i,j)3

当图像为二值图时,就是这个图像上白色区域的总和,因此,可以用来求二值图像(轮廓,连通域)的面积。

(2)一阶矩,如式(4),式(5), m 10 = ∑ i = 1 M ∑ j = 1 N i ∗ f ( i , j ) 式 ( 4 ) m_{10}=\sum_{i=1}^{M}\sum_{j=1}^{N}i*f(i,j)式(4) m10=i=1Mj=1Nif(i,j)4 m 01 = ∑ i = 1 M ∑ j = 1 N j ∗ f ( i , j ) 式 ( 5 ) m_{01}=\sum_{i=1}^{M}\sum_{j=1}^{N}j*f(i,j)式(5) m01=i=1Mj=1Njf(i,j)5
当图像为二值图时, m 10 m_{10} m10就是白色像素关于x坐标的累加和,而 m 01 m_{01} m01则是y坐标的累加和。

由此,可获得图像的重心。

重心 ( x c , y c ) (x_c,y_c) (xc,yc): x c = m 10 m 00 x_c=\frac{m_{10}}{m_{00}} xc=m00m10, y c = m 01 m 00 y_c=\frac{m_{01}}{m_{00}} yc=m00m01

常见的中心矩的用处:
由中心矩求物体方向,公式如式(6) θ = 1 / 2 a c t a n ( 2 μ 11 μ 20 − μ 02 ) 式 ( 6 ) \theta=1/2actan(\frac{2\mu_{11}} {\mu_{20}-\mu_{02}})式(6) θ=1/2actan(μ20μ022μ11)6

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值