第一章:分布式光纤振动传感系统的应用背景和范围
第二章:介绍分布式光纤传感系统基本原理;三种光纤传感技术;后向瑞利散射、拉曼散射和布里渊散射;三种基于干涉仪的光纤传感器:马赫-增德尔、迈克尔逊以及萨格纳克;
2.1光纤传感器的基本构成及传感原理
2.2 分布式光纤传感器原理
2.3 基于光干涉技术的分布式传感
第三章:振动识别算法:从时域和频域两方面详细介绍了当前光纤振动传感信号的几种方法:短时平均能量、短时过零率、峰均比、3dB谱宽度;隐马尔可夫模型、人工神经网络分析、小波分析以及梅尔频率倒谱系数
3.1 时域统计算法
3.1.1 短时平均能量:
定义:窗函数截取一个很短时间内的原始信号函数,再求其平方和:
优点:进一步扩大高频和低频信号的差距:在环境噪声较小的时候运算的结果比较精准,而在环境噪声比较大的情形下则不大适合使用。
3.1.2 短时过零率:
定义:表示的是一帧信号波形通过横轴的次数
用法:在一帧信号中,正常情况下其过零率是一定值或者偏差不会太大,倘若有扰动出现,必然会增加或减少过零率,通过观察短时过零率的变化来识别是否有入侵的发生。
3.1.3 峰均比
定义:短时信号内的最大峰值除以该段信号内的平均值
用处:用来处理外部轻微信号长时间作用于光纤上的干扰:它们幅度分布平均,但相比噪声信号其幅值更大。
3.2 频域统计算法
相比时域统计算法,频域统计算法在计算量上稍有增加,不过其区分精度较时域统计算法大为提高:
3.2.1 3dB谱宽度
定义:当信号的功率谱密度下降3dB的时候其在频谱上的宽度作为信号的频域特征参数
3.2.2 频谱区域面积统计算法
3.2.3 信息熵法
定义:信息熵的大小是通过信息在传播过程中的衰减来定义的,假使信息传播的范围广并且传播时间还很长,那么其信息熵值必然会很大,反之亦然。
特点:信息熵也可以用来描述一个系统内部的“无序”程度,假使系统内部的数据完全是随机摆放无序可循,则其熵值必然很大;而系统内的数据若是按某一种序列有序排放,则其熵值必然很小。
用法:通过计算信息熵值,根据其值的大小来判断该信号是否为入侵信号:入侵信号包含的信息量应该最大,其内部的数据也更为混乱,所以其信息熵值也最大;而扰动信号或者噪声信号其包含的信息量应该都较为偏小,内部数据相比入侵时的数据要规范许多,故而其熵
值也应该比较小,因此可以将其当作区分入侵信号与扰动信号的特征值。
3.3 语言识别算法
3.3.1 隐马尔可夫模型(Hidden Markov Model, HMM)
定义:HMM 是在马尔可夫链的基础上发展而来的:所谓马尔可夫链是指在得到了当前信息后,以前的信息对于估测未来的信息都是无关紧要的,即通过观察得到的观察值与状态都是一一对应的; 然而在通常情况下,现实中所遇到的问题都要比马尔可夫链模型要繁杂许多,其状态无法通过观察直接得到,观察到的值与状态之间是有差异的,而非一一对应; 但每个状态都能通过某个输出而有一个可能的概率分布,即可以用一个随机过程来感知状态是否存在,这样的模型我们就称之为隐马尔可夫模型.
用处:其中一类是用短时模型来表述平稳段的信号,另一类就是一个短时平稳段是怎么跳转到另一个短时平稳段的问题, 即HMM 处理了时变非平稳信号的模型化问题,它通过运用概率论的方法完美地解决了怎样识别拥有多个变量的短时平稳信号段,以及怎样追踪它们之间的变化问题, 其特点是不仅可以描述随机过程的短时间特性还可以描述其中动态转移的特性。
主要问题:
3.3.2 人工神经网络(Artificial Neural Networks, ANN)
定义:通过模拟人类大脑神经元的一些基本功能原件,并将其按照不同的联接方式组建而成的网络。 著名神经网络研究专家 Hecht Nielsen 将 ANN 定义为一个网络结构为有向拓扑图的动态系统,它是人工建立,通过对离散或连续的输入状态进行相应并予以处理。 在该网络中,各神经元节点都代表着一种运算逻辑或输出函数,各节点之间的连接强弱通过其连接的权重决定,所谓权重,就是在 ANN 的运用中根据激励来做的自适应变化。
分类:
3.3.3 梅尔频率倒谱系数(Mel Frequency Cepstral Coefficient, MFCC) (后文研究重点)
定义:模仿人耳听觉模型用一带通滤波器组对输入信号进行滤波处理,通过对滤波器组输出的信号做进一步处理就可以得到一特征值,该特征值就被称为梅尔频率倒谱系数,其中 Mel 频率与频率 f 之间的变换公式为:
3.4 小波分析
3.4.1 小波分析
特点:小波变换能够根据频率的变化自动改变分析窗口的大小,且其不依赖于数学模型,具备自适应性和数学显微镜性质
对比:
定义:
3.4.2 小波包分析
基本原理:小波包分析是基于小波分析对信号做进一步的分析和重构的一种手段,其基本原理是将信号在一个由一组相互正交的小波函数构成的子空间上进行分解,得到其在各维度上的信息,进而可以提取其在不同频带上的特征,而其在各个维度上的时域特征也可以得到保留。
对比:小波分析可以从时域与频域同时对信号进行分析,但是其主要是将信号分解为低频与高频两部分,只对低频信号的进行再一次分解,而对高频信号不作任何处理,故而小波分析对信号高频部分的分辨效果十分低。小波包分析正是针对于此改进而来的,它不但对低频信号有进一步的分解,而且对高频信号也有再一次的分解,还能够自适应地确定信号在各频段内的分辨率,进而提高其在时域与频域的分辨率,是一种相比小波分析更为精密的信号分析方法。
优点:
第四章:分布式传感系统的系统结构,简要介绍了下位机采集卡的功能,重点介绍了上位机系统的前端界面设计,比较分析了关系型和非关系型数据库的优缺点
4、 系统结构及上位机系统配置
4.1 系统结构
上位机对数据采集模块传来的数据进行处理,将之与用户设定的阈值对比,若超过阈值,则以灯光、声音、短信等方式进行告警
4.2 数据采集模块
本论文的主要研究工作在于对上位机系统的研发和算法软件的实现
4.3 上位机系统模块
三大模块:前端交互界面、数据处理分析、数据存储备份,本论文的工作重心在终端数据处理,故而接下来会着重介绍数据处理分析模块
4.3.1 开发语言
python
4.3.2 前端交互界面模块
4.3.3 数据存储备份模块
关系型数据库、非关系型数据库
4.3.4 数据处理分析模块
根据上面介绍的算法对采集到的数据进行分析处理
第五章:两种不同的光纤振动传感信号分析算法:基于FFT的特征参数提取算法和基于 MFCC的算法
5.1 基于FFT的频谱分析算法
5.2 梅尔频率倒谱系数的特征提取
FFT算法和MFCC特征参数提取法的对比:
第六章:全文总结和展望
创新之处和主要工作:
本论文的创新之处在于将光学、计算机处理和语音信号识别相结合,设计了基于MFCC 的光纤振动信号识别,通过对比分析基于
FFT 的频谱分析算法和基于 MFCC 特征参数提取这两种算法,其本质都是从频域上对振动信号进行分析,其中,基于 MFCC特征参数提取的算法对振动入侵行为的检测更为精确。通过对仿真波形与实测数据处理,结果可以明显看出,基于 MFCC 特征参数提取的算法是可行且非常有效的。
不足之处: