机器学习--坐标轴下降法

推导

坐标轴下降法的思路就是每次选择一个维度,固定其他维度,然后使选择的这个维度达到最优,然后反复的这么做直到收敛。

比如有一个函数 g ( x 1 , x 2 , . . . , x n ) g(x_1, x_2, ..., x_n) g(x1,x2,...,xn),我们想用坐标轴下降的对其进行优化。
那么就有:
第一步,先固定一个维度,比如说固定 x 2 x_2 x2,此时除了 x 2 x_2 x2以外,其它的数字都是常量。
第二步,我们对 x 2 x_2 x2求导,然后令导数等于零求出一个极大值。
第三步,如果没有收敛就重复1,2步,否则收敛结束算法。

接下来我们使用坐标轴下降法来求解LASSO。
设有n个样本 { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x n , y n ) } \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\} {(x1,y1),(x2,y2),...,(xn,yn)},我们使用简单线性模型+L1正则。
其中每个样本 x i x_i xi有m个特征。
得到
L ( W , b ) = ∑ i = 1 n [ ( ∑ j = 1 m x i j w j + b ) − y i ] 2 + λ ∑ i = 1 m ∣ w i ∣ L(W,b) = \sum_{i = 1}^n[(\sum_{j = 1}^mx_{ij}w_j + b) - y_i]^2 + \lambda \sum_{i = 1}^m|w_i| L(W,b)=i=1n[(j=1mxijwj+b)yi]2+λi=1mwi
其中w为权重,b为偏置, λ \lambda λ为惩罚系数。
我们首先固定某个维度 w l w_l wl,然后进行求导
d L ( W , b ) d w l = 2 ∑ i = 1 n [ ( ∑ j = 1 m x i j w j + b ) − y i ] x i l + d ( λ ∑ i = 1 m ∣ w i ∣ ) d w l \frac{dL(W,b) }{dw_l}=2\sum_{i = 1}^n[(\sum_{j = 1}^mx_{ij}w_j + b) - y_i]x_{il} + \frac{d(\lambda \sum_{i = 1}^m|w_i|)}{dw_l} dwldL(W,b)=2i=1n[(j=1mxijwj+b)yi]xil+dwld(λi=1mwi)

我们对式子进行整理。把所有的 w l w_l wl 项进行合并。
d L ( W , b ) d w l = 2 ∑ i = 1 n [ ( ∑ j ≠ l m x i j w j + b ) + x i l w l − y i ] x i l + d ( λ ∑ i = 1 m ∣ w i ∣ ) d w l \frac{dL(W,b) }{dw_l}=2\sum_{i = 1}^n[(\sum_{j \ne l}^mx_{ij}w_j + b)+x_{il}w_l - y_i]x_{il} + \frac{d(\lambda \sum_{i = 1}^m|w_i|)}{dw_l} dwldL(W,b)=2i=1n[(j=lmxijwj+b)+xilwlyi]xil+dwld(λi=1mwi)
进一步合并
d L ( W , b ) d w l = 2 ∑ i = 1 n [ ( ∑ j ≠ l m x i j w j + b ) − y i ] + 2 w l ∑ i = 1 n x i l 2 + d ( λ ∑ i = 1 m ∣ w i ∣ ) d w l \frac{dL(W,b) }{dw_l}=2\sum_{i = 1}^n[(\sum_{j \ne l}^mx_{ij}w_j + b) - y_i] + 2w_l\sum_{i = 1}^nx_{il}^2 + \frac{d(\lambda \sum_{i = 1}^m|w_i|)}{dw_l} dwldL(W,b)=2i=1n[(j=lmxijwj+b)yi]+2wli=1nxil2+dwld(λi=1mwi)
然后可以发现,前两项中,有两个常数,我们设
2 ∑ i = 1 n [ ( ∑ j ≠ l m x i j w j + b ) − y i ] = a 2 ∑ i = 1 n x i l 2 = b 2\sum_{i = 1}^n[(\sum_{j \ne l}^mx_{ij}w_j + b) - y_i]=a\\ 2\sum_{i = 1}^nx_{il}^2=b 2i=1n[(j=lmxijwj+b)yi]=a2i=1nxil2=b
就有
d L ( W , b ) d w l = a + w l b + d ( λ ∑ i = 1 m ∣ w i ∣ ) d w l \frac{dL(W,b) }{dw_l}=a + w_lb + \frac{d(\lambda \sum_{i = 1}^m|w_i|)}{dw_l} dwldL(W,b)=a+wlb+dwld(λi=1mwi)
此时就需要分情况讨论

  1. w l > 0 w_l > 0 wl>0
    d L ( W , b ) d w l = a + w l b + λ \frac{dL(W,b) }{dw_l}=a+w_lb+\lambda dwldL(W,b)=a+wlb+λ
  2. w l < 0 w_l < 0 wl<0
    d L ( W , b ) d w l = a + w l b − λ \frac{dL(W,b) }{dw_l}=a + w_lb-\lambda dwldL(W,b)=a+wlbλ
  3. w l = 0 w_l = 0 wl=0,此时不可导,我们认为结果应该介于上两者之间
    a + w l b − λ ≤ d L ( W , b ) d w l ≤ a + w l b + λ a + w_lb-\lambda \leq \frac{dL(W,b) }{dw_l}\leq a+w_lb+\lambda a+wlbλdwldL(W,b)a+wlb+λ

我们令 d L ( W , b ) d w l = 0 \frac{dL(W,b) }{dw_l}=0 dwldL(W,b)=0
w l = − a − d ( λ ∑ i = 1 m ∣ w i ∣ ) d w l b w_l=\frac{-a-\frac{d(\lambda \sum_{i = 1}^m|w_i|)}{dw_l}}{b} wl=badwld(λi=1mwi)

  1. w l > 0 w_l>0 wl>0此时 − a − λ b > 0 \frac{-a-\lambda}{b} >0 baλ>0,由于 b > 0 b >0 b>0所以此时 λ + a < 0 \lambda+ a<0 λ+a<0
    w l = − a − λ b w_l=\frac{-a-\lambda}{b} wl=baλ

  2. w l < 0 w_l<0 wl<0此时,由于 b > 0 b >0 b>0所以此时 a − λ > 0 a - \lambda>0 aλ>0
    w l = − a + λ b w_l=\frac{-a+\lambda}{b} wl=ba+λ

  3. w l = 0 w_l=0 wl=0时,此时 − λ ≤ a ≤ λ -\lambda \leq a\leq \lambda λaλ
    w l = 0 w_l=0 wl=0

然后就可以更新 w l w_l wl了,反复的迭代下去直到收敛。
从上式也可以看出,当a落到了某个区间时 w l w_l wl就会被赋值为0,从而达到了稀疏的效果。

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值