论文阅读笔记《An Image Based Visual Servo Approach with Deep Learning for Robotic Manipulation》

本文介绍了一种基于深度学习的图像视觉伺服方法,通过神经网络处理图像输入,计算相机位姿偏差,应用于实时控制。研究指出其与传统IBVS的区别,并强调了与PBVS的关系。关注计算机视觉和深度学习的朋友,请订阅'深视'获取更多专业知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

核心思想

  该文提出一种基于深度学习的图像视觉伺服方法,整篇文章乏善可陈,就是利用一个神经网络输入当前位置和期望位置的图像,输出当前位置和期望位置得偏差,并根据这个偏差制定控制律。整个控制流程如下图所示
在这里插入图片描述
  该文设计的神经网络结构如下图所示
在这里插入图片描述

算法评价

  作者把这种方法归到基于图像的视觉伺服(IBVS)中,我觉得是不合适的,因为IBVS中计算的偏差,应该是图像坐标系中特征点之间的偏差,而不是转化成相机位姿之间的偏差,这应该属于PBVS,基于位置的视觉伺服。

如果大家对于深度学习与计算机视觉领域感兴趣,希望获得更多的知识分享与最新的论文解读,欢迎关注我的个人公众号“深视”。在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深视

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值