显著性检测(二)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_36130482/article/details/79550560

SalBenchmark使用笔记

项目地址下载项目
项目结构如图这里写图片描述
其中Data里存放数据集,code里是opencv和MATLAB代码,result是跑完工程之后的结果。

1. 改动MATLAB

进入 ./Code/matlab/运行RunAll.m

clear; close all; clc;
RootDir = 'C:/Users/ThinkCentre/Desktop/saliency/evaluate/SalBenchmark-master/Data/';
%SubNames = {'DataSet1/' , 'DataSet2/'};
SubNames = {'DataSet3/'};
%MethodNames = {'CA', 'COV', 'DSR', 'FES', 'GR', 'ICVS', 'MC', 'PCA', 'RBD', 'SEG', 'SeR', 'SIM', 'SR', 'SUN', 'SWD'};
% You can chose these methods to produce SaliencyMap as follow.
MethodNames = {'CA', 'COV', 'DSR', 'FES', 'GR', 'ICVS', 'MC', 'PCA'};

%MethodNames = {'COV','SWD'};

RunDatasets(SubNames, MethodNames, RootDir);

MethodNames里存放方法的名字,MATLAB的算法存放在对应算法名称XXX的文件夹,接口文件命名为GetXXX.m,接口函数写法如下:

function [ saliencyMap ] = GetXXX(fileName)

end

增加自己算法需要改动两点

  • RunAll.m文件里在MethodNames 添加自己算法的名称’XXX’
  • GetSal.m文件里66行添加
  • case 'XXX'
    sMap = GetXXX(fileName);

    接下来就可运行自己代码了,需要注意的一点:迭代自己算法时需要删除对应算法的结果,结果存放在/Data/DataSet1/Saliency/中。否则可能会出现算法结果不更新的情况。

    最后如果自己需要跑自己下载的数据集的话,仿照DataSet1和DataSet2的结构建立自己的DataSet3,DataSet4等等,然后在RunAll.m修改SubNames 即可
    这里写图片描述

2. 改动opencv代码

打开./Code/Demo.sln,编译整个项目,可能会出现关于opencv的一些错误,这时候需要在报错的文件里加上opencv的头文件opencv2/opencv.hpp即可。
在运行过程中可能会出现跑代码跑一半挂掉的情况,这时候删掉Demo.cpp文件里第18行里删掉程序挂掉的那一步对应的算法。
需要跑自己的数据集的话再修改const char* _dbNames[] = { "DataSet1","DataSet2"};即可

3. 改动Results文件夹

运行完opencv的代码之后会在SalBenchmark-master文件夹下生产Results文件夹,运行对应的数据集生成的DataSetXPrRocAuc文件,之后可能会报错说xTickLabels未定义,注释掉对应报错行的代码对应的if(....) end,即可出现所有的评价结果图。

没有更多推荐了,返回首页