数据分析实战应用案例精讲-【概念篇】用户画像(最终篇)(附实战案例)

目录

前言

几个高频面试题目

1.在标签建模的过程中,如何为新登录的用户打标签,如何为具有较少行为的用户打标签?

2.哪些因素制约用户画像的落地效果?

3.建立SuperID时,出现多对多的情况,应该怎么处理?

4.构建用户画像需要具备哪些条件?

搭建用户画像标签化体系

什么是标签体系

为什么需要标签?

标签的作用

标签分类

(1)泛分类

(2)建模分类

标签的体系结构

(1)标签级别

(2)标签命名&赋值

(3)标签属性

(4)标签体系 层级结构

(5)标签体系结构分类

标签类型

1统计类标签

2规则类标签

3机器学习挖掘类标签

用户画像特征工程

1. 用户特征分析方法

2. 用户特征分析过程

ID打通

如何将数据转化为标签

第一步:数据在线

第二步:数据信息转换

第三步:信息标签转换

第四步:标签指导决策

标签体系建设步骤

标签与权重

1)什么叫参数化标签?

2)什么是标签的权重?

示例

标签建模

基于TF-IDF算法的权重

基于相关系数矩阵的权重 

用户画像流程构建

用户画像创建思路

(1)创建定性用户画像的过程

(2) 创建经定量检验的定性用户画像的过程

(3) 创建定量用户画像的过程:

创建用户画像的方法

(1) 第一步:定性研究

(2)第二步:用户分类

(3) 第三步:定量验证

(4)第四步:建立画像

构建用户画像的流程

(1)确立目标与画像维度

(2)确立调研方法

(3)制定计划与数据收集

(4)分析资料,角色聚类

(5)综合特征,产出画像

(6)结合产品,画像落地

 用户画像构建过程中的注意事项

(1)用户画像的创建需要足够的数据和内容

 (2)用户画像要避免太过抽象

(3) 用户画像一定要结合实际业务制定

(4)用户画像是动态的

(5) 用户画像数据需要维护

(6)用户画像的使用 辩证使用

用户画像的数据架构及技术实现

用户标签数据存储

1.mysql

2.HBase

3.Elasticsearch

4.REDIS

任务的执行调度

OOZIE

Azkaban

用户画像方案模块

 市场上常见画像产品

1.竞品分析 

(1)产品说明

(2) 功能对比

(3)界面对比

(4)产品底层技术

​编辑

应用场景

1.金融产品常见用户画像

2.群体维度常见的画像

3.用户标签应用



前言

本文为上两篇数据分析实战应用案例精讲-【概念篇】用户画像(附实战案例)数据分析实战应用案例精讲-【概念篇】用户画像(补充篇)(附实战案例)

的补充篇,用户画像作为一个体系,要学习的内容比较多,分为多篇博文来描述。本文主要介绍用户画像标签体系的构建和使用。

在数据的基建和应用层面,除了重视数据分析外,也越来越重视数据资产在更多业务场景中的应用,标签画像的建设和应用就是其中一类很常见的需求和期望。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值