数据分析实战应用案例精讲-【概念篇】物流行业数据分析(附Python和Java实现代码)

目录

前言

几个相关概念

1.单位销售额物流成本率

2.单位成本物流成本率=物流成本总成本×100%

3.单位营业费用物流成本率=(销售费用一般管理费用)×100%

4.物流职能成本率=物流职能成本物流总成本

5.单位产品的物流成本

物流分析岗需要什么技术

物流分析面临哪些压力

1、类型繁多,来源复杂

2、信息量大

3、更新速度快

传统物流分析存在的困难

数据分析解决综合物流问题?

(一)运输管理——货物跟踪与调度

(二)结算管理——过程监督与应收账款

(三)经营分析 ——毛利与管理报表

物流数据分析主要分析哪些内容?

(1)按环节分类

(2)按费用分类

(3)物流仓储分类

仓储物流数据分析方法

仓储物流数据分析公式

ABC分析方法——可用于解决仓储中的分类问题

EIQ分析方法——可用于解决制定分拣作业方式问题

EOQ分析方法——可用于解决合理化仓库的库容问题

PCB分析方法——可用于解决选择合理仓储设备问题

物流分析常用的分析方法 

1)对比分析法

2)因素分析法

3)作业成本分析法

仓储选址规划

(1)仓储选址规划常用数据分析方法

(2)仓储选址常用方法对比分析

(3)大数据时代仓储选址方法应用拓展

物流中的大数据优化供应链

  1) 可以加快运输的最后一英里

  2) 过程更加稳定更加透明

  3) 路线得到优化

  4) 易腐烂商品的新鲜度更高

  5) 仓库和供应链的自动化

应用案例

1.交通物流运输行业通用数据分析方案

(1)交通物流运输大数据技术应用架构

(2)交通物流行业典型FineBI应用场景 

数据分析在物流行业如何应用 

1、优化仓储

2、优化路由规划

3、减少逆向物流

4、提高客户服务水平

5、实现精准预测

6 、掌握客户习惯,增强客户粘性

7 、掌握上下游数据信息,提高市场掌控力

8、引领新技术发展

知识拓展

代码实现

Python

 Java

物流配送系统


前言

近年来,宅经济、懒人经济随着互联网企业兴起、物流体系持续完善而发展,受短期疫情刺激逐步走向成熟。数据显示,在2016年至2020年间,本地生活O2O市场规模不断保持平稳增长,生鲜电商、外卖行业的市场规模在2020年分别达到2638亿元及6646亿元。

宅经济离不开物流体系,同时也在反哺物流发展,懒人经济的需求加上其商业模式的成熟,必将带动快递物流行业加速发展。

几个相关概念

1.单位销售额物流成本率

这个比率越高,则其对价格的弹性越低,从该企业历年的数据中,大体可以了解其动向,另外,通过与同行业和行业外进行比较,可以进一步了解企业的物流成本水平。该比率受价格变动和交易条件变化的影响较大,因此作为考核指标还存在一定的缺陷。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值