目标检测YOLO实战应用案例100讲-基于YOLOv5的双阶段小样本目标检测

本文介绍了小样本目标检测的现状与挑战,特别是基于YOLOv5的双阶段小样本目标检测方法。文章详细讨论了目标检测的发展,从传统方法到基于深度学习的YOLO系列,以及迁移学习在目标检测中的应用。此外,还探讨了小样本目标检测的解决方案,包括基于迁移与微调、模型结构和度量学习的方法。最后,概述了深度学习目标检测与分类的基本原理和模型,如R-CNN、YOLO、SSD以及EfficientDet等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

国内外研究现状  

目标检测的发展与现状 

迁移学习的发展与现状 

小样本目标检测的发展与现状 

基础理论研究及相关工作介绍 

2.1  基于深度学习的目标检测算法概述  

2.1.1  双阶段目标检测算法 

2.1.2  单阶段目标检测算法 

2.1.3  YOLOv5目标检测框架 

2.2  基于深度学习的目标分类算法概述  

2.2.1  深度学习目标分类原理 

 2.2.2  深度学习分类模型 


本文篇幅较长,分为上下两篇,下篇详见基于YOLOv5的双阶段小样本目标检测(续)

 

前言

目标检测任务作为计算机视觉领域的经典任务之一,由目标定位和目标分类两个子 任务组成[ 1]。其中目标定位任务将会输出图片中感兴趣类别目标在图片上的位置和范围, 输出的数据形式一般为感兴趣区域中心及感兴趣区域的长宽或感兴趣区域在图片上的 四个端点的坐标信息;而目标分类负责判断图片中是否有感兴趣类别的目标出现,其输 出数据的形式包括类别的编码以及目标属于该类别的概率[ 2]。目标检测任务的应用范围 非常广泛,如人脸检测、智能交通、安全系统检测和医疗方面检测[ 3]。从像素级分析的 传统目标检测时代到特征级分析的深度学习型目标检测时代&#x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值