Resnet-50网络结构与代码学习

参考链接:ResNet网络结构搭建

import torch.nn as nn
import torch
 
 
class BasicBlock(nn.Module): # 含有两层3*3conv的残差结构
    expansion = 1
 
    def __init__(self, in_channel, out_channel, stride=1, downsample=None, **kwargs):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                               kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channel)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
                               kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)
        self.downsample = downsample
 
    def forward(self, x):
        identity = x # 捷径分支
        if self.downsample is not None: # downsample为None,对应的是实线残差结构
            identity = self.downsample(x)
 
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
 
        out = self.conv2(out)
        out = self.bn2(out)
 
        out += identity
        out = self.relu(out)
 
        return out
 
 
class Bottleneck(nn.Module): # 含有两层1*1conv和一个3*3conv的残差结构
    """
    注意:原论文中,在虚线残差结构的主分支上,第一个1x1卷积层的步距是2,第二个3x3卷积层步距是1。
    但在pytorch官方实现过程中是第一个1x1卷积层的步距是1,第二个3x3卷积层步距是2,
    这么做的好处是能够在top1上提升大概0.5%的准确率。
    可参考Resnet v1.5 https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch
    """
    expansion = 4
 
    def __init__(self, in_channel, out_channel, stride=1, downsample=None): #在每个大块中,只有第一次残差连接非None,其余残差连接均为None;
    # 注意,在每一个大块的第一个子块的第一个和第三个卷积层的stride永远为1;
        super(Bottleneck, self).__init__()
 
        # width = int(out_channel * (width_per_group / 64.)) * groups
 
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                               kernel_size=1, stride=1, bias=False)  # 压缩通道维度
        self.bn1 = nn.BatchNorm2d(out_channel)
        # -----------------------------------------
        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, 
                               kernel_size=3, stride=stride, bias=False, padding=1) #每个大块的第1次执行空间压缩,其余不执行,取决于stride;
        self.bn2 = nn.BatchNorm2d(out_channel)
        # -----------------------------------------
        self.conv3 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel*self.expansion, # 卷积核的个数是前面的四倍
                               kernel_size=1, stride=1, bias=False)  # 4倍升高通道的维度
        self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
 
    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)
 
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
 
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
 
        out = self.conv3(out)
        out = self.bn3(out)
 
        out += identity
        out = self.relu(out)
 
        return out
 
 
class ResNet(nn.Module):
 
    def __init__(self,
                 block,
                 blocks_num, # [3, 4, 6, 3]
                 num_classes=1000,
                 include_top=True): # 类的构造函数
        super(ResNet, self).__init__() # 用于调用父类(或超类)的方法
        self.include_top = include_top
        self.in_channel = 64 # 此处是通过3*3max pool之后的channel
 
        # self.groups = groups
        # self.width_per_group = width_per_group
 
        self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
                               padding=3, bias=False)
                               
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)
        # 对应表格中conv_2
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)# 池化不会改变通道维度,因此这里特征通道维度为64
        self.layer1 = self._make_layer(block, 64, blocks_num[0], stride=2) 
        # 对应表格中conv_3
        self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2) 
        # 对应表格中conv_4
        self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2) 
        # 对应表格中conv_5
        self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2) 
        
        if self.include_top:
            # output size = (1, 1) 自适应的平均池化下采样操作,无论输入特征矩阵高宽是多少,通过AdaptiveAvgPool2d之后得到的特征矩阵高宽都是1
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
            self.fc = nn.Linear(512 * block.expansion, num_classes) # 全连接层
 
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
 
    def _make_layer(self, block, channel, block_num, stride=1): # channel对应conv_2 conv_3 conv_4 conv_5中第一层卷积之后的channel数
        downsample = None
        if stride != 1 or self.in_channel != channel * block.expansion: # 不成立就会生成下采样函数downsample;
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False), # 注意,在这里只有第一个大块的第一个残差连接stride为1;
                nn.BatchNorm2d(channel * block.expansion))
 
        layers = []
        layers.append(block(self.in_channel,
                            channel, # 此处表示的是每个大块的每个子块除最后一次卷积的输出通道维度;
                            downsample=downsample,
                            stride=stride))
        self.in_channel = channel * block.expansion
 
        for _ in range(1, block_num):
            layers.append(block(self.in_channel,
                                channel))
 
        return nn.Sequential(*layers)
 
    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
 
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
 
        if self.include_top:
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)
 
        return x
 
 
def resnet34(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnet34-333f7ec4.pth
    return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
 
 
def resnet50(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnet50-19c8e357.pth
    return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
 
 
def resnet101(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnet101-5d3b4d8f.pth
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)
 
 
def resnext50_32x4d(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth
    groups = 32
    width_per_group = 4
    return ResNet(Bottleneck, [3, 4, 6, 3],
                  num_classes=num_classes,
                  include_top=include_top,
                  groups=groups,
                  width_per_group=width_per_group)
 
 
def resnext101_32x8d(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth
    groups = 32
    width_per_group = 8
    return ResNet(Bottleneck, [3, 4, 23, 3],
                  num_classes=num_classes,
                  include_top=include_top,
                  groups=groups,
                  width_per_group=width_per_group)
 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值