马踏棋盘

菜鸟成长逆袭之旅,爱好撸铁和撸代码,有强制的约束力,希望通过自己的努力做一个高品质人
Work together and make progress together

马踏棋盘解决方案:

马踏棋盘是经典的程序设计问题之一,主要的解决方案有两种:一种是基于深度优先搜索的方法,另一种是基于贪婪算法的方法。第一种基于深度优先搜索的方法是比较常用的算法,深度优先搜索算法也是数据结构中的经典算法之一,主要是采用递归的思想,一级一级的寻找,遍历出所有的结果,最后找到合适的解。而基于贪婪的算法则是制定贪心准则,一旦设定不能修改,他只关心局部最优解,但不一定能得到最优解,本文采用的是第一种算法策略。

【问题描述】

关于马踏棋盘的基本过程:国际象棋的棋盘为 8x8 的方格棋盘。现将"马"放在任意指定的方格中,按照"马"走棋的规则将"马"进行移动。要求每个方格只能进入一次,最终使得"马"走遍棋盘的64个方格。
在这里插入图片描述
在8x8国际象棋棋盘中,马的走法有八种,如上图

问题

随便从棋盘上的一点(如(2,0)),马开始走,由此点开始,走遍棋盘上的其他63个格子的路径,求此路径

思路

1.用回溯法,一条路走下去,碰到死路就回头走,用到递归(类似于图的深度遍历)
2.设计一个nextxy()函数,用来判断下面的八个点哪一个能走
3.print函数,输出位置
4.递归函数TracelChessBoard(),用tag来作为标志计数,递归退出条件:tag=64
5.用递归时,记得设置好当马碰到死路时,返回去,数据要清会成没碰死路前一个格子数据。

代码如下:

#include<stdio.h>
#include<time.h>
 
#define X 8
#define Y 8
 
int chess[X][Y];
//找到基于(x,y)位置的下一个可走的位置
int nextxy(int *x,int *y,int count)
{
    switch(count)
    {
        case 0:
            if(*x+2<=X-1&& *y-1>=0&&chess[*x+2][*y-1]==0)
            {
                *x+=2;
                *y-=1;
                return 1;
            }
            break;
        case 1:
            if(*x+2<=X-1&& *y+1<=Y-1&&chess[*x+2][*y+1]==0)
            {
                *x+=2;
                *y+=1;
                return 1;
            }
            break;
        case 2:
            if(*x+1<=X-1&& *y-2>=0&&chess[*x+1][*y-2]==0)
            {
                *x+=1;
                *y-=2;
                return 1;
            }
            break;
        case 3:
            if(*x+1<=X-1&& *y+2<=Y-1&&chess[*x+1][*y+2]==0)
            {
                *x+=1;
                *y+=2;
                return 1;
            }
            break;
        case 4:
            if(*x-1>=0&& *y-2>=0&&chess[*x-1][*y-2]==0)
            {
                *x-=1;
                *y-=2;
                return 1;
            }
            break;
        case 5:
            if(*x-1>=0&& *y+2<=Y-1&&chess[*x-1][*y+2]==0)
            {
                *x-=1;
                *y+=2;
                return 1;
            }
            break;
        case 6:
            if(*x-2>=0&& *y-1>=0&&chess[*x-2][*y-1]==0)
            {
                *x-=2;
                *y-=1;
                return 1;
            }
            break;
        case 7:
            if(*x-2>=0&& *y+1<=Y-1&&chess[*x-2][*y+1]==0)
            {
                *x-=2;
                *y+=1;
                return 1;
            }
            break;
        default:
            break;
    }
	return 0;
}
 
void print()
{
    int i,j;
    for(i=0;i<X;i++)
    {
        for(j=0;j<Y;j++)
        {
            printf("%2d\t",chess[i][j]);
        }
        printf("\n");
    }
    printf("\n");
}
 
//深度优先遍历棋盘
//(x,y)为位置坐标
//tag是标记变量,每走一步tag+1
int TracelChessBoard(int x, int y,int tag)
{
    int x1=x,y1=y,flag=0,count=0;
    chess[x][y]=tag;
    if(X*Y==tag)
    {
        //打印棋盘
		print();
        return 1;
    }
 
        //找到马可走的下一步坐标(x1,y1),如果找到flag+1
    flag=nextxy(&x1,&y1,count);
    while (0==flag&&count<7)
    {
        count++;
        flag=nextxy(&x1,&y1,count);
    }
    while(flag)
    {
        if(TracelChessBoard(x1,y1,tag+1))
        {
            return 1;
        }
        //继续找到马可走的下一步坐标(x1,y1),如果找到flag+1
        x1=x;
        y1=y;
        count++;
        flag=nextxy(&x1,&y1,count);
        while (0==flag&&count<7)
        {
            count++;
            flag=nextxy(&x1,&y1,count);
        }
    }
    if(0==flag)
    {
        chess[x][y]=0;
 
    }
    return 0;
}
void main()
{
    int i,j;
    clock_t start,finish;
    start=clock();
 
    for(i=0;i<X;i++)
    {
        for(j=0;j<Y;j++)
        {
            chess[i][j]=0;
        }
 
    }
    if(!TracelChessBoard(2,0,1))
    {
        printf("失败");
    }
    finish=clock();
    printf("\n耗时:%f\n",(double)(finish-start)/CLOCKS_PER_SEC);
}
问题描述:将马随机放在国际象棋的 8X8 棋盘中的某个方格中 马按走棋规则进行移动 要求每个方格上只进入一次 走遍棋盘上全部 64 个方格 编制递归程序 求出马的行走路线 并按求出的行走路线 将数字 1 2 … 64 依次填入 8X8 的方阵输出之 测试数据:由读者指定可自行指定一个马的初始位置 实现提示:每次在多个可走位置中选择一个进行试探 其余未曾试探过的可走位置必须用适当结构妥善管理 以备试探失败时的“回溯”悔棋使用 并探讨每次选择位置的“最佳策略” 以减少回溯的次数 背景介绍: 国际象棋为许多令人着迷的娱乐提供了固定的框架 而这些框架常独立于游戏本身 其中的许多框架都基于骑士奇异的L型移动规则 一个经典的例子是骑士漫游问题 从十八世纪初开始 这个问题就引起了数学家和解密爱好者的注意 简单地说 这个问题要求从棋盘上任一个方格开始按规则移动骑士 使之成功的游历国际象棋棋盘的64个方格 且每个方格都接触且仅接触一次 可以用一种简便的方法表示问题的一个解 即将数字1 64按骑士到达的顺序依次放入棋盘的方格中 一种非常巧妙的解决骑士漫游地方法由J C Warnsdorff于1823年给出 他给出的规则是:骑士总是移向那些具有最少出口数且尚未到达的方格之一 其中出口数是指通向尚未到达方格的出口数量 在进一步的阅读之前 你可以尝试利用Warnsdorff规则手工构造出该问题的一个解 实习任务: 编写一个程序来获得马踏棋盘即骑士漫游问题的一个解 您的程序需要达到下面的要求: 棋盘的规模是8 8; 对于任意给定的初始化位置进行试验 得到漫游问题的解; 对每次实验 按照棋盘矩阵的方式 打印每个格被行径的顺序编号 技术提示: 解决这类问题的关键是考虑数据在计算机中的存储表示 可能最自然的表示方法就是把棋盘存储在一个8 8的二维数组board中 以 x y 为起点时骑士可能进行的八种移动 一般来说 位于 x y 的骑士可能移动到以下方格之一: x 2 y+1 x 1 y+2 x+1 y+2 x+2 y+1 x+2 y 1 x+1 y 2 x 1 y 2 x 2 y 1 但请注意 如果 x y 的位置离某一条边较近 有些可能的移动就会把骑士移到棋盘之外 而这当然是不允许的 骑士的八种可能的移动可以用一个数组MoveOffset方便地表示出来: MoveOffset[0] 2 1 MoveOffset[1] 1 2 MoveOffset[2] 1 2 MoveOffset[3] 2 1 MoveOffset[4] 2 1 MoveOffset[5] 1 2 MoveOffset[6] 1 2 MoveOffset[7] 2 1 于是 位于 x y 的骑士可以移动到 x+MoveOffset[k] x y+MoveOffset[k] y 其中k是0到7之间的某个整数值 并且新方格必须仍位于棋盘上 扩展需求:可以考虑将结果图形化 b 考察所有初始化的情况 测试是否都能够得到解 ">问题描述:将马随机放在国际象棋的 8X8 棋盘中的某个方格中 马按走棋规则进行移动 要求每个方格上只进入一次 走遍棋盘上全部 64 个方格 编制递归程序 求出马的行走路线 并按求出的行走路线 将数字 1 2 … 64 依 [更多]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值