多项式求值和多项式插值

本文探讨了多项式求值的三种方法,指出方法3因其较少的乘法运算次数而成为最高效的选择。同时,介绍了拉格朗日插值法,通过举例说明如何使用该方法进行插值,并解释了当插值点具有线性关系时,插值结果可能为一次多项式的情况。拉格朗日插值法在数值分析中具有重要应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、多项式求值

        多项式的求值是需要一定的技巧的,因为好的技巧能极大地提升多项式求值的计算效率。目前有三种方法,以上述题目为例,下面是这三种求值方法的乘法运算次数和加法运算次数的对比表格,可以看出,方法3最为高效,因为乘法计算次数更少。

方法#乘法运算次数加法运算次数
方法1104
方法274
方法344

二、多项式插值

        插值的方法有很多,其中一个著名的方法就是拉格朗日插值。那么,它是如何做到的呢?请看下面的内容。

        举个例子。

        然而,也有特殊的情况:使得三个点插值的结果得到的不是二次多项式。例如:(0,0)(1,1)(2,2),代入公式,得到的多项式是一次多项式P_2(x)=x。这是因为这三个点本来就是有着线性的关系,但值得注意的是,它得到的结果仍然属于一个多项式,只不过二次方项的系数为0。当然啦,你也可以举其他例子,使得其他系数为0,然后令其变成一个特殊的情况。

        这个强大的拉格朗日插值法对应的形式化描述如下:

出处

Timothy Sauer,Numerical Analysis(数值分析),Second Edition(第二版,机械工业出版社).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞机火车巴雷特

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值