一、多项式求值
多项式的求值是需要一定的技巧的,因为好的技巧能极大地提升多项式求值的计算效率。目前有三种方法,以上述题目为例,下面是这三种求值方法的乘法运算次数和加法运算次数的对比表格,可以看出,方法3最为高效,因为乘法计算次数更少。
方法# | 乘法运算次数 | 加法运算次数 |
方法1 | 10 | 4 |
方法2 | 7 | 4 |
方法3 | 4 | 4 |
二、多项式插值
插值的方法有很多,其中一个著名的方法就是拉格朗日插值。那么,它是如何做到的呢?请看下面的内容。
举个例子。
然而,也有特殊的情况:使得三个点插值的结果得到的不是二次多项式。例如:,
,
,代入公式,得到的多项式是一次多项式
。这是因为这三个点本来就是有着线性的关系,但值得注意的是,它得到的结果仍然属于一个多项式,只不过二次方项的系数为0。当然啦,你也可以举其他例子,使得其他系数为0,然后令其变成一个特殊的情况。
这个强大的拉格朗日插值法对应的形式化描述如下:
出处
Timothy Sauer,Numerical Analysis(数值分析),Second Edition(第二版,机械工业出版社).