什么是readout function/readout函数

本文解析了readout函数在图神经网络中的作用,介绍了如何将节点特征聚合为整图特征,以及常用的方法如平均池化和DeepGraphInfomax。还提到了set2vec和DiffPool等进阶策略。重点参考了ICLR论文DeepGraphInfomax。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、什么是readout函数?

        readout函数是【图神经网络/图卷积神经网络/图表示学习/图分类】中的术语。在图表示学习中,模型通常会得到图的节点表示,这些是上游基础。而在像图分类这样的下游应用中,我们通常需要一个整图的特征表示,而不仅仅是图中所有节点的特征表示。此时readout函数通过聚合节点特征的方式来得到整图的特征表示。

        假设图的节点表示为

 

其中N为节点个数,\overrightarrow{h}_i为第i个节点的特征表示。那么一个非常常用的readout函数为

\mathcal{R}(\bold{H})则是整图的特征表示,而\sigma是一个sigmoid函数。

        别看这只是平平无奇地做一下平均操作,但据说这样做效果是最好的。除了这样做,有相关的资料指出也有set2vec、DiffPool等更加先进的处理方法。

二、参考

        论文:Velickovic, Petar, et al. "Deep Graph Infomax." ICLR (Poster) 2.3 (2019): 4.

        Deep Graph Infomax:互信息最大化的无监督图对比学习

        顶会快讯 | ICML2020三篇图网络相关论文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞机火车巴雷特

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值