一、什么是readout函数?
readout函数是【图神经网络/图卷积神经网络/图表示学习/图分类】中的术语。在图表示学习中,模型通常会得到图的节点表示,这些是上游基础。而在像图分类这样的下游应用中,我们通常需要一个整图的特征表示,而不仅仅是图中所有节点的特征表示。此时readout函数通过聚合节点特征的方式来得到整图的特征表示。
假设图的节点表示为
其中N为节点个数,为第
个节点的特征表示。那么一个非常常用的readout函数为
则是整图的特征表示,而
是一个sigmoid函数。
别看这只是平平无奇地做一下平均操作,但据说这样做效果是最好的。除了这样做,有相关的资料指出也有set2vec、DiffPool等更加先进的处理方法。
二、参考
论文:Velickovic, Petar, et al. "Deep Graph Infomax." ICLR (Poster) 2.3 (2019): 4.