STEAM的前世今生

        STEAM平台的发行者是制作反恐精英的Valve公司。实际上最早的Steam系统早在2002年就与CS1.4 Beta一起问世了。Valve打造它的初衷是想借其给Valve自家出品的诸多游戏包括《反恐精英》、《半条命》等提供更好的在线服务,包括自动更新补丁、防作弊等。例如:其中一个《反恐精英》游戏的更新导致了大量在线玩家掉线。在此之后,Valve团队决定要制作一个平台软件,游戏可经这个平台自动更新,亦可使用整合了的反盗版及反外挂系统。在正式制作前,Valve公司曾接触多个公司以合作开发平台,当中包括微软、雅虎及RealNetworks,但全都拒绝。

        经过一段时间的试验,Valve开始联络不同的游戏发行商和独立游戏开发者签署合约并为他们提供Steam平台的游戏销售服务。两个最早期在Steam平台上推出的独立游戏是Rag Doll Kung Fu和Darwinia。其后,2005年12月,加拿大游戏发行商Strategy First亦继而和Valve合作,成为第一个于Steam平台上推出游戏的发行商。2005年,第一波第三方游戏开始在Steam平台上出现。2007年,部份规模较大的游戏开发发行商,例如id Software、Eidos Interactive和Capcom等开始加入Steam以销售他们的游戏。同年五月,Steam平台上已经有一千三百万个帐号被建立,及共有150个游戏在Steam上售卖。第三方的游戏越来越多,甚至非游戏类的应用软件也开始在STEAM上现身。

        至目前为止,Steam的运作十分成功广泛,无数游戏在此平台上发行、更新。STEAM平台已经成为了现如今地球上最成功的游戏发布、销售平台,覆盖了每个大洲的游戏推出,并且支持多种在线支付方式。但是由于STEAM时常进行打折促销活动,从而导致许多玩家购买诸多游戏导致财政紧张,所以经常有人调侃STEAM的吸金能力。

        STEAM对游戏开发的厂商来说,最为重要的一点是有效的控制了盗版发展,其次给了很多不知名的小型游戏开发者成名的机会(Steam Green Light  青睐之光),是对游戏厂商和发行方宣传的好地方;对玩家来说,既可以玩到正版游戏,又不用花费太多的钱去购买零售卡带。有了平台后,可以方便玩家的选择。下载速度最高可达到每秒钟/10M,给玩家从未体验过的感觉。

        在STEAM上,不但可以享受及时的更新,还会根据你的语言与地区调整游戏属性,比如当玩家进行HALF-LIFE2游戏时,游戏可自动查找玩家的地区并启用相应的语言。玩家可在全中文的界面,甚至是全中文语音下体验本地化游戏。只要平台支持,还可以从其他地点的节点调用玩家的信息进行游戏,不必进入游戏后再调节选项。

        STEAM对游戏封装后产生的文件,其扩展名为GCF,是Valve采用的文件打包方式,其好处在于减少对硬盘文件的读写,加快游戏的运行速度。并使用第三方自定义的内容与游戏原始文件分开,方便MOD的同时不会破坏原文件。

        在STEAM对市场的冲击下其中的一些游戏厂商也纷纷推出了自己的相应平台,Electronic Arts Inc (简称EA 美国艺电游戏公司)的Origin平台,育碧(Ubisoft Entertainment)的Uplay平台。然而STEAM最大的优势正是在于其上面的第三方游戏(含二三线游戏、小品级独立游戏等)数量极多,已初步形成了“百花齐放”之势,可以说不同口味的玩家都能在Steam那庞大的游戏库上找到属于自己的菜。


基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现
内容概要:本文深入介绍了HarmonyOS文件系统及其在万物互联时代的重要性。HarmonyOS自2019年发布以来,逐步覆盖多种智能设备,构建了庞大的鸿蒙生态。文件系统作为其中的“数字管家”,不仅管理存储资源,还实现多设备间的数据协同。文章详细介绍了常见的文件系统类型,如FAT、NTFS、UFS、EXT3和ReiserFS,各自特点和适用场景。特别强调了HarmonyOS的分布式文件系统(hmdfs),它通过分布式软总线技术,打破了设备界限,实现了跨设备文件的无缝访问。此外,文章对比了HarmonyOS与Android、iOS文件系统的差异,突出了其在架构、跨设备能力和安全性方面的优势。最后,从开发者视角讲解了开发工具、关键API及注意事项,并展望了未来的技术发展趋势和对鸿蒙生态的影响。 适合人群:对操作系统底层技术感兴趣的开发者和技术爱好者,尤其是关注物联网和多设备协同的用户。 使用场景及目标:①理解HarmonyOS文件系统的工作原理及其在多设备协同中的作用;②掌握不同文件系统的特性和应用场景;③学习如何利用HarmonyOS文件系统进行应用开发,提升跨设备协同和数据安全。 阅读建议:本文内容详实,涵盖了从基础概念到高级开发技巧的多个层次,建议读者结合自身需求,重点关注感兴趣的部分,并通过实践加深理解。特别是开发者可参考提供的API示例和开发技巧,尝试构建基于HarmonyOS的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值