Spring AI 集成 Open AI

注意:这个版本仍在开发中,尚未被认为是稳定版本。如需最新的快照版本,请使用 Spring AI 1.0.0-SNAPSHOT!

OpenAI Chat

Spring AI 支持来自 OpenAI 的各种 AI 语言模型,OpenAI 是 ChatGPT 背后的公司,凭借其创造的行业领先的文本生成模型和嵌入模型,极大地激发了人们对 AI 驱动文本生成的兴趣。

先决条件

您需要通过 OpenAI 创建 API 才能访问 ChatGPT 模型。在 OpenAI 注册页面创建账户并在 API 密钥页面生成令牌。Spring AI 项目定义了一个名为 spring.ai.openai.api-key 的配置属性,您应该将其设置为从 openai.com 获取的 API 密钥值。导出环境变量是设置该配置属性的一种方式:

export SPRING_AI_OPENAI_API_KEY=<在此插入密钥>
添加仓库和 BOM

Spring AI 工件发布在 Maven Central 和 Spring Snapshot 仓库中。请参考 Repositories 部分将这些仓库添加到您的构建系统中。

为了帮助依赖管理,Spring AI 提供了一个 BOM(物料清单),确保整个项目中使用一致的 Spring AI 版本。请参考 Dependency Management 部分将 Spring AI BOM 添加到您的构建系统中。

自动配置

Spring AI 为 OpenAI Chat 客户端提供了 Spring Boot 自动配置。要启用它,请将以下依赖项添加到项目的 Maven pom.xml 或 Gradle build.gradle 文件中:

Maven:

<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-openai-spring-boot-starter</artifactId>
</dependency>

Gradle:

dependencies {
    implementation 'org.springframework.ai:spring-ai-openai-spring-boot-starter'
}

提示:请参考 Dependency Management 部分将 Spring AI BOM 添加到您的构建文件中。

聊天属性

重试属性:spring.ai.retry 前缀用作配置 OpenAI 聊天模型重试机制的属性前缀。

属性描述默认值
spring.ai.retry.max-attempts最大重试次数10
spring.ai.retry.backoff.initial-interval指数回退策略的初始睡眠时长2秒
spring.ai.retry.backoff.multiplier回退间隔的乘数5
spring.ai.retry.backoff.max-interval最大回退时长3分钟
spring.ai.retry.on-client-errors如果为 false,抛出 NonTransientAiException,不对 4xx 客户端错误代码进行重试false
spring.ai.retry.exclude-on-http-codes不应触发重试的 HTTP 状态代码列表(例如,抛出 NonTransientAiException)
spring.ai.retry.on-http-codes应触发重试的 HTTP 状态代码列表(例如,抛出 TransientAiException)

连接属性:spring.ai.openai 前缀用作连接 OpenAI 的属性前缀。

属性描述默认值
spring.ai.openai.base-url连接的 URLapi.openai.com
spring.ai.openai.api-keyAPI 密钥-
spring.ai.openai.organization-id可选,指定用于 API 请求的组织-
spring.ai.openai.project-id可选,指定用于 API 请求的项目-

提示:对于属于多个组织的用户(或通过旧版用户 API 密钥访问项目的用户),您可以可选地指定用于 API 请求的组织和项目。来自这些 API 请求的使用将计入指定组织和项目的使用。

配置属性:spring.ai.openai.chat 前缀用作配置 OpenAI 聊天模型实现的属性前缀。

属性描述默认值
spring.ai.openai.chat.enabled启用 OpenAI 聊天模型true
spring.ai.openai.chat.base-url可选的覆盖 spring.ai.openai.base-url 属性,提供特定聊天的 URL-
spring.ai.openai.chat.completions-path要附加到基础 URL 的路径/v1/chat/completions
spring.ai.openai.chat.api-key可选的覆盖 spring.ai.openai.api-key,提供特定聊天的 API 密钥-
spring.ai.openai.chat.organization-id可选,指定用于 API 请求的组织-
spring.ai.openai.chat.project-id可选,指定用于 API 请求的项目-
spring.ai.openai.chat.options.model要使用的 OpenAI 聊天模型名称。可以选择 gpt-4o、gpt-4o-mini、gpt-4-turbo、gpt-3.5-turbo 等模型。有关更多信息,请参见模型页面。gpt-4o-mini
spring.ai.openai.chat.options.temperature控制生成文本的创意程度的采样温度。较高的值会使输出更随机,较低的值会使结果更集中和确定。通常建议不要在相同的请求中修改 temperature 和 top_p,因为这两者的交互效果难以预测。0.8
spring.ai.openai.chat.options.frequencyPenalty范围为 -2.0 到 2.0 的数字,正值会根据现有文本中的频率惩罚新词令,使模型减少重复相同内容的可能性。0.0f
spring.ai.openai.chat.options.logitBias修改指定令牌出现在生成文本中的可能性-
spring.ai.openai.chat.options.maxTokens(已弃用,建议使用 maxCompletionTokens)聊天完成生成的最大令牌数。输入令牌和生成令牌的总长度受模型的上下文长度限制。-
spring.ai.openai.chat.options.maxCompletionTokens可以生成的最大令牌数(包括可见的输出令牌和推理令牌)。-
spring.ai.openai.chat.options.n每个输入消息生成的聊天完成选项数量。请注意,您将根据所有选项的生成令牌数量收费。保持 n 为 1 以最小化成本。1
spring.ai.openai.chat.options.store是否存储此聊天完成请求的输出以供模型使用false
spring.ai.openai.chat.options.metadata用于在聊天完成仪表板中过滤完成项的开发者定义的标签和值空 Map
spring.ai.openai.chat.options.output-modalities请求模型为此请求生成的输出类型。大多数模型可以生成文本,这是默认值。gpt-4o-audio-preview 模型也可以用来生成音频。要请求该模型同时生成文本和音频响应,可以使用:text, audio。流式传输不支持此功能。-
spring.ai.openai.chat.options.output-audio音频生成的参数。当请求音频输出时,必需指定此项。需要 gpt-4o-audio-preview 模型,且不支持流式完成。-
spring.ai.openai.chat.options.presencePenalty范围为 -2.0 到 2.0 的数字,正值会根据当前文本中是否出现该词惩罚新词令,从而增加模型谈论新话题的可能性。-
spring.ai.openai.chat.options.responseFormat.type与 GPT-4o、GPT-4o mini、GPT-4 Turbo 和所有 GPT-3.5 Turbo 模型兼容。JSON_OBJECT 类型启用 JSON 模式,确保模型生成的消息是有效的 JSON。JSON_SCHEMA 类型启用结构化输出,确保模型符合提供的 JSON 架构。JSON_SCHEMA 类型需要设置 responseFormat.schema 属性。-
spring.ai.openai.chat.options.responseFormat.name响应格式架构名称,仅适用于 responseFormat.type=JSON_SCHEMAcustom_schema
spring.ai.openai.chat.options.responseFormat.schema响应格式 JSON 架构,仅适用于 responseFormat.type=JSON_SCHEMA-
spring.ai.openai.chat.options.responseFormat.strict响应格式 JSON 架构的严格性,仅适用于 responseFormat.type=JSON_SCHEMA-
spring.ai.openai.chat.options.seed此功能处于 Beta 测试阶段。如果指定,我们的系统将尽力进行确定性采样,因此重复使用相同种子和参数的请求应返回相同结果。-
spring.ai.openai.chat.options.stop最多 4 个序列,在这些序列中,API 将停止生成更多的令牌。-
spring.ai.openai.chat.options.topP一种与温度采样替代的采样方法,称为“核采样”,模型会考虑概率质量排名前 top_p 的令牌。因此,0.1 表示只有排名前 10% 的令牌会被考虑。通常建议只修改其中一个参数(temperature 或 top_p)。-
spring.ai.openai.chat.options.tools模型可以调用的工具列表。目前,仅支持函数作为工具。使用此项提供模型可能生成 JSON 输入的函数列表。-
spring.ai.openai.chat.options.toolChoice控制模型调用的函数。如果设置为“none”,则模型不会调用任何函数,而是生成消息。如果设置为“auto”,则模型可以在生成消息或调用函数之间进行选择。通过指定特定函数(例如:{“type”: “function”, “function”: {“name”: “my_function”}})强制模型调用该函数。没有函数时默认值为 none;如果存在函数,则默认值为 auto。-
spring.ai.openai.chat.options.user表示您的最终用户的唯一标识符,可以帮助 OpenAI 监控和检测滥用行为。-
spring.ai.openai.chat.options.functions启用单个提示请求中的函数调用的函数名称列表。具有这些名称的函数必须存在于 functionCallbacks 注册表中。-
spring.ai.openai.chat.options.stream-usage(仅适用于流式传输)设置为添加一个额外的块,包含整个请求的令牌使用统计信息。此块的 choices 字段为空数组,所有其他块也将包含一个 usage 字段,但值为 null。false
spring.ai.openai.chat.options.parallel-tool-calls是否在使用工具时启用并行函数调用。true
spring.ai.openai.chat.options.http-headers可选的 HTTP 头部,将添加到聊天完成请求中。若要覆盖 api-key,您需要使用 Authorization 头部键,并且必须在键值前加上 Bearer 前缀。-
spring.ai.openai.chat.options.proxy-tool-calls如果为 true,Spring AI 将不会在内部处理函数调用,而是将其代理到客户端。然后由客户端负责处理函数调用,分派给适当的函数,并返回结果。如果为 false(默认值),Spring AI 将在内部处理函数调用。仅适用于支持函数调用的聊天模型。false

注意:您可以覆盖 ChatModel 和 EmbeddingModel 实现中的通用 spring.ai.openai.base-url 和 spring.ai.openai.api-key。若设置了 spring.ai.openai.chat.base-url 和 spring.ai.openai.chat.api-key 属性,这些属性优先于通用属性。这在您希望对不同模型和不同模型端点使用不同的 OpenAI 账户时非常有用。

提示:所有以 spring.ai.openai.chat.options 前缀的属性,都可以通过在提示调用中添加特定于请求的运行时选项来在运行时覆盖。

运行时选项

OpenAiChatOptions.java 类提供了模型配置选项,例如要使用的模型、温度、频率惩罚等。

在启动时,默认选项可以通过 OpenAiChatModel(api, options) 构造函数或 spring.ai.openai.chat.options.* 属性进行配置。

在运行时,您可以通过向 Prompt 调用添加新的、特定于请求的选项来覆盖默认选项。例如,要为特定请求覆盖默认模型和温度:

ChatResponse response = chatModel.call(
    new Prompt(
        "Generate the names of 5 famous pirates.", // 生成 5个著名海盗的名字。
        OpenAiChatOptions.builder()
            .model("gpt-4-o")
            .temperature(0.4)
        .build()
    ));

除了特定模型的 OpenAiChatOptions,您还可以使用一个便捷的 ChatOptions 实例,通过 ChatOptionsBuilder#builder() 创建。

函数调用

您可以将自定义 Java 函数注册到 OpenAiChatModel 中,并让 OpenAI 模型智能地选择输出一个包含调用一个或多个注册函数参数的 JSON 对象。这是一种强大的技术,将大语言模型(LLM)的能力与外部工具和 API 连接起来。有关 OpenAI 函数调用的更多信息,请阅读相关文档。

多模态

多模态是指模型能够同时理解和处理来自多种来源的信息,包括文本、图像、音频和其他数据格式。OpenAI 支持文本、视觉和音频输入模态。

视觉

支持视觉多模态的 OpenAI 模型包括 gpt-4、gpt-4o 和 gpt-4o-mini。有关更多信息,请参阅视觉指南。

OpenAI 用户消息 API 可以将一组 base64 编码的图像或图像 URL 与消息一起发送。Spring AI 的 Message 接口通过引入 Media 类型来支持多模态 AI 模型。此类型包含关于媒体附件数据和细节的信息,利用 Spring 的 org.springframework.util.MimeType 和 org.springframework.core.io.Resource 来处理原始媒体数据。

以下是来自 OpenAiChatModelIT.java 的代码示例,展示了如何将用户文本与图像结合使用 gpt-4o 模型:

var imageResource = new ClassPathResource("/multimodal.test.png");

var userMessage = new UserMessage("Explain what do you see on this picture?", // 解释一下你在这张图片上看到了什么。
        new Media(MimeTypeUtils.IMAGE_PNG, this.imageResource));

ChatResponse response = chatModel.call(new Prompt(this.userMessage,
        OpenAiChatOptions.builder().model(OpenAiApi.ChatModel.GPT_4_O.getValue()).build()));

提示:GPT_4_VISION_PREVIEW 将继续仅对该模型的现有用户提供,自 2024 年 6 月 17 日起。如果您不是现有用户,请使用 GPT_4_O 或 GPT_4_TURBO 模型。详情请查看此链接

或者,使用 gpt-4o 模型的图像 URL 等价:

var userMessage = new UserMessage("Explain what do you see on this picture?", // 解释一下你在这张图片上看到了什么。
        new Media(MimeTypeUtils.IMAGE_PNG,
                "https://docs.spring.io/spring-ai/reference/_images/multimodal.test.png"));

ChatResponse response = chatModel.call(new Prompt(this.userMessage,
        OpenAiChatOptions.builder().model(OpenAiApi.ChatModel.GPT_4_O.getValue()).build()));

提示:您还可以传递多个图像。

示例展示了一个模型接收 multimodal.test.png 图像作为输入:
在这里插入图片描述
并结合文本消息 “Explain what do you see on this picture?”,生成类似以下的响应:

This is an image of a fruit bowl with a simple design. The bowl is made of metal with curved wire edges that
create an open structure, allowing the fruit to be visible from all angles. Inside the bowl, there are two
yellow bananas resting on top of what appears to be a red apple. The bananas are slightly overripe, as
indicated by the brown spots on their peels. The bowl has a metal ring at the top, likely to serve as a handle
for carrying. The bowl is placed on a flat surface with a neutral-colored background that provides a clear
view of the fruit inside.
“这是一张简单设计的水果碗的图片。碗是由金属制成,边缘是弯曲的铁丝,形成开放的结构,使得水果从各个角度都能看到。
碗内有两根黄色的香蕉,放在看起来像是一个红苹果上面。
香蕉略微过熟,表皮上有棕色的斑点。
碗的顶部有一个金属环,可能是用来作为提手。
碗放置在一个平坦的表面上,背景是中性色,使得里面的水果清晰可见。”
音频

提供输入音频多模态支持的 OpenAI 模型包括 gpt-4o-audio-preview。有关更多信息,请参阅音频指南。

OpenAI 用户消息 API 可以将一系列 base64 编码的音频文件包含在消息中。Spring AI 的消息接口通过引入 Media 类型来促进多模态 AI 模型的使用。该类型包括有关消息中的媒体附件的数据和详细信息,利用 Spring 的 org.springframework.util.MimeType 和 org.springframework.core.io.Resource 来处理原始媒体数据。目前,OpenAI 仅支持以下媒体类型:audio/mp3 和 audio/wav。

以下是从 OpenAiChatModelIT.java 中摘录的代码示例,演示了如何将用户文本与音频文件结合,使用 gpt-4o-audio-preview 模型:

var audioResource = new ClassPathResource("speech1.mp3");

var userMessage = new UserMessage("What is this recording about?", // 这段录音是关于什么的?
        List.of(new Media(MimeTypeUtils.parseMimeType("audio/mp3"), audioResource)));

ChatResponse response = chatModel.call(new Prompt(List.of(userMessage),
        OpenAiChatOptions.builder().model(OpenAiApi.ChatModel.GPT_4_O_AUDIO_PREVIEW).build()));

提示:您也可以传递多个音频文件。

输出音频

提供输出音频多模态支持的 OpenAI 模型包括 gpt-4o-audio-preview。有关更多信息,请参阅音频指南。

OpenAI 助理消息 API 可以包含一系列 base64 编码的音频文件与消息一起发送。Spring AI 的消息接口通过引入 Media 类型来促进多模态 AI 模型的使用。该类型包括有关消息中媒体附件的数据和详细信息,利用 Spring 的 org.springframework.util.MimeType 和 org.springframework.core.io.Resource 来处理原始媒体数据。目前,OpenAI 仅支持以下音频类型:audio/mp3 和 audio/wav。

以下是一个代码示例,演示如何使用 gpt-4o-audio-preview 模型,将用户文本与音频字节数组响应结合:

var userMessage = new UserMessage("Tell me joke about Spring Framework");

ChatResponse response = chatModel.call(new Prompt(List.of(userMessage),
        OpenAiChatOptions.builder()
            .model(OpenAiApi.ChatModel.GPT_4_O_AUDIO_PREVIEW)
            .outputModalities(List.of("text", "audio"))
            .outputAudio(new AudioParameters(Voice.ALLOY, AudioResponseFormat.WAV))
            .build()));

String text = response.getResult().getOutput().getContent(); // 音频转录文本

byte[] waveAudio = response.getResult().getOutput().getMedia().get(0).getDataAsByteArray(); // 音频数据

您必须在OpenAiChatOptions中指定音频模态,以生成音频输出。AudioParameters类提供音频输出的声音和格式。

结构化输出

OpenAI 提供了自定义的结构化输出 API,确保您的模型生成的响应严格符合您提供的 JSON Schema。除了现有的 Spring AI 模型无关的结构化输出转换器外,这些 API 还提供了增强的控制和精度。目前,OpenAI 支持 JSON Schema 语言格式的一个子集。

配置

Spring AI 允许您通过 OpenAiChatOptions 构建器或应用程序属性配置响应格式。

使用Chat选项构建器

您可以使用 OpenAiChatOptions 构建器以编程方式设置响应格式,如下所示:

String jsonSchema = """
        {
            "type": "object",
            "properties": {
                "steps": {
                    "type": "array",
                    "items": {
                        "type": "object",
                        "properties": {
                            "explanation": { "type": "string" },
                            "output": { "type": "string" }
                        },
                        "required": ["explanation", "output"],
                        "additionalProperties": false
                    }
                },
                "final_answer": { "type": "string" }
            },
            "required": ["steps", "final_answer"],
            "additionalProperties": false
        }
        """;

Prompt prompt = new Prompt("how can I solve 8x + 7 = -23",
        OpenAiChatOptions.builder()
            .model(ChatModel.GPT_4_O_MINI)
            .responseFormat(new ResponseFormat(ResponseFormat.Type.JSON_SCHEMA, this.jsonSchema))
            .build());

ChatResponse response = this.openAiChatModel.call(this.prompt);

遵守 OpenAI 对 JSON Schema 语言格式的子集

与BeanOutputConverter工具集成

您可以利用现有的BeanOutputConverter工具,自动从您的领域对象生成JSON Schema,并将结构化响应转换为领域特定实例:

record MathReasoning(
    @JsonProperty(required = true, value = "steps") Steps steps,
    @JsonProperty(required = true, value = "final_answer") String finalAnswer) {

    record Steps(
        @JsonProperty(required = true, value = "items") Items[] items) {

        record Items(
            @JsonProperty(required = true, value = "explanation") String explanation,
            @JsonProperty(required = true, value = "output") String output) {
        }
    }
}

var outputConverter = new BeanOutputConverter<>(MathReasoning.class);

var jsonSchema = this.outputConverter.getJsonSchema();

Prompt prompt = new Prompt("how can I solve 8x + 7 = -23",
        OpenAiChatOptions.builder()
            .model(ChatModel.GPT_4_O_MINI)
            .responseFormat(new ResponseFormat(ResponseFormat.Type.JSON_SCHEMA, this.jsonSchema))
            .build());

ChatResponse response = this.openAiChatModel.call(this.prompt);
String content = this.response.getResult().getOutput().getContent();

MathReasoning mathReasoning = this.outputConverter.convert(this.content);

尽管这对 JSON Schema 来说是可选的,OpenAI 要求为结构化响应提供必填字段,以确保其正确运行。Kotlin 反射用于推断哪些属性是必需的或不是必需的,这取决于类型的可空性和参数的默认值,因此在大多数用例中,不需要使用 @get:JsonProperty(required = true)。@get:JsonProperty(value = “custom_name”) 对于自定义属性名称非常有用。确保在相关 getter 上生成注解,使用 @get: 语法,参见相关文档

通过应用程序属性进行配置

另外,在使用 OpenAI 自动配置时,您可以通过以下应用程序属性配置所需的响应格式:

spring.ai.openai.api-key=YOUR_API_KEY
spring.ai.openai.chat.options.model=gpt-4o-mini

spring.ai.openai.chat.options.response-format.type=JSON_SCHEMA
spring.ai.openai.chat.options.response-format.name=MySchemaName
spring.ai.openai.chat.options.response-format.schema={"type":"object",
"properties":
	{"steps":
		{"type":"array","items":
			{"type":"object","properties":
				{"explanation":{"type":"string"},"output":{"type":"string"}},
				"required":	["explanation","output"],"additionalProperties":false}},
		"final_answer":{"type":"string"}},"required":["steps","final_answer"],
		"additionalProperties":false}
spring.ai.openai.chat.options.response-format.strict=true
示例控制器

创建一个新的 Spring Boot 项目,并将 spring-ai-openai-spring-boot-starter 添加到你的 pom(或 gradle)依赖中。

在 src/main/resources 目录下添加 application.properties 文件,以启用并配置 OpenAi 聊天模型:

spring.ai.openai.api-key=YOUR_API_KEY
spring.ai.openai.chat.options.model=gpt-4o
spring.ai.openai.chat.options.temperature=0.7

将 api-key 替换为你的 OpenAI 凭证。

这将创建一个 OpenAiChatModel 实现,你可以将其注入到类中。以下是一个简单的 @RestController 类示例,使用该聊天模型进行文本生成。

@RestController
public class ChatController {

    private final OpenAiChatModel chatModel;

    @Autowired
    public ChatController(OpenAiChatModel chatModel) {
        this.chatModel = chatModel;
    }

    @GetMapping("/ai/generate")
    public Map<String,String> generate(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
        return Map.of("generation", this.chatModel.call(message));
    }

    @GetMapping("/ai/generateStream")
    public Flux<ChatResponse> generateStream(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
        Prompt prompt = new Prompt(new UserMessage(message));
        return this.chatModel.stream(prompt);
    }
}
手动配置

OpenAiChatModel 实现了 ChatModel 和 StreamingChatModel,并使用低级的 OpenAiApi 客户端连接到 OpenAI 服务。

将 spring-ai-openai 依赖项添加到项目的 Maven pom.xml 文件中:

<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-openai</artifactId>
</dependency>

或者添加到你的 Gradle build.gradle 文件中:

dependencies {
    implementation 'org.springframework.ai:spring-ai-openai'
}

请参阅依赖管理部分,了解如何将 Spring AI BOM 添加到构建文件中。

接下来,创建一个 OpenAiChatModel 并用它进行文本生成:

var openAiApi = new OpenAiApi(System.getenv("OPENAI_API_KEY"));
var openAiChatOptions = OpenAiChatOptions.builder()
            .model("gpt-3.5-turbo")
            .temperature(0.4)
            .maxTokens(200)
            .build();
var chatModel = new OpenAiChatModel(this.openAiApi, this.openAiChatOptions);

ChatResponse response = this.chatModel.call(
    new Prompt("Generate the names of 5 famous pirates."));

或者使用流响应:

Flux<ChatResponse> response = this.chatModel.stream(
    new Prompt("Generate the names of 5 famous pirates."));

OpenAiChatOptions 提供了聊天请求的配置信息。OpenAiChatOptions.Builder 是一个流式选项构建器。

低级 OpenAiApi 客户端

OpenAiApi 提供了一个轻量级的 Java 客户端,用于访问 OpenAI Chat API。

以下类图展示了 OpenAiApi 聊天接口及其构建块:
在这里插入图片描述
以下是一个简单的代码片段,展示了如何通过编程方式使用 API:

OpenAiApi openAiApi =
    new OpenAiApi(System.getenv("OPENAI_API_KEY"));

ChatCompletionMessage chatCompletionMessage =
    new ChatCompletionMessage("Hello world", Role.USER);

// 同步请求
ResponseEntity<ChatCompletion> response = this.openAiApi.chatCompletionEntity(
    new ChatCompletionRequest(List.of(this.chatCompletionMessage), "gpt-3.5-turbo", 0.8, false));

// 流式请求
Flux<ChatCompletionChunk> streamResponse = this.openAiApi.chatCompletionStream(
        new ChatCompletionRequest(List.of(this.chatCompletionMessage), "gpt-3.5-turbo", 0.8, true));

有关更多信息,请参阅 OpenAiApi.java 的 JavaDoc。

低级 API 示例
API 密钥管理

Spring AI 通过 ApiKey 接口及其实现提供灵活的 API 密钥管理。默认实现 SimpleApiKey 适用于大多数使用场景,但你也可以创建自定义实现来处理更复杂的场景。

默认配置

默认情况下,Spring Boot 自动配置将使用 spring.ai.openai.api-key 属性创建一个 API 密钥 Bean:

spring.ai.openai.api-key=your-api-key-here
自定义 API 密钥配置

你可以使用构建器模式创建一个自定义的 OpenAiApi 实例,并使用自己的 ApiKey 实现:

ApiKey customApiKey = new ApiKey() {
    @Override
    public String getValue() {
        // 自定义逻辑来获取 API 密钥
        return "your-api-key-here";
    }
};

OpenAiApi openAiApi = OpenAiApi.builder()
    .apiKey(customApiKey)
    .build();

// 使用自定义的 OpenAiApi 实例创建聊天客户端
OpenAiChatClient chatClient = new OpenAiChatClient(openAiApi);

这种方法在以下情况下非常有用:

  • 从安全的密钥存储中检索 API 密钥
  • 动态旋转 API 密钥
  • 实现自定义的 API 密钥选择逻辑
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值