1 过拟合
(1)回归中的过拟合
第一个模型是欠拟合,不能很好地适应训练集;第三个模型用四次方进行拟合,过于强调拟合原始数据,而丢失了预测新数据的能力。而中间的模型似乎最合适。
(2)分类问题中的过拟合
? 的次数越高,拟合的越好,但相应的预测的能力就可能变差。
(3)如何处理过拟合
1)丢弃一些不能正确预测的特征。可以是手工选择保留哪些特征,或者使用一
些模型选择的算法来帮忙(例如PCA)
2)正则化。 保留所有的特征,但是减少参数的大小(magnitude)。
2. 代价函数
(1)代价函数
增加惩罚项,使θ尽可能的小,代价函数如下:

约定:增加惩罚项一般从θ1