吴恩达机器学习--正则化(4)

本文深入探讨了过拟合现象及其在回归和分类问题中的表现。介绍了处理过拟合的方法,如特征选择和正则化。详细阐述了正则化的代价函数,正则化参数λ的选择对模型的影响。接着,讲解了线性回归和逻辑回归的正则化实现,包括梯度下降和正规方程的应用。
摘要由CSDN通过智能技术生成

1 过拟合

(1)回归中的过拟合

在这里插入图片描述第一个模型是欠拟合,不能很好地适应训练集;第三个模型用四次方进行拟合,过于强调拟合原始数据,而丢失了预测新数据的能力。而中间的模型似乎最合适。

(2)分类问题中的过拟合

在这里插入图片描述? 的次数越高,拟合的越好,但相应的预测的能力就可能变差。

(3)如何处理过拟合

1)丢弃一些不能正确预测的特征。可以是手工选择保留哪些特征,或者使用一
些模型选择的算法来帮忙(例如PCA)
2)正则化。 保留所有的特征,但是减少参数的大小(magnitude)。

2. 代价函数

(1)代价函数

增加惩罚项,使θ尽可能的小,代价函数如下:
在这里插入图片描述
约定:增加惩罚项一般从θ1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值