
数学
文章平均质量分 87
头痛的根源
CN-Dust
WAWAWA
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【概率论】贝叶斯定理——直觉是如何欺骗你的
本文通过Steve职业选择的生动案例,直观解释了贝叶斯定理的核心思想。在农民与图书管理员的职业判断中,虽然Steve的性格特征更符合图书管理员形象,但基于农民基数更大的事实(20:1),通过构建样本分析(4名符合条件的图书管理员vs20名农民),最终得出选择农民概率更高的结论。案例形象展示了贝叶斯定理"新证据更新既有认知"的核心要义:先验概率(职业分布)与条件概率(特征符合度)共同决定最终判断。文中配图直观呈现了贝叶斯公式的内在逻辑,强调统计思维在概率判断中的重要性。(149字)原创 2025-07-23 00:10:29 · 623 阅读 · 0 评论 -
神奇的四元数
我们现在所熟知的向量,点乘、叉乘等,在四元数被发现时并不存在,至少没有标准化的形式。在当时,四元数被其他数学家认为是晦涩难懂的,他们认为没必要用这么复杂的东西来描述三维的变换。甚至据说,《爱丽丝梦游仙境》中的“疯帽子”就是隐射四元数的角色。首先,我们之前就认识了虚数。复数是实数的二维延伸,四元数则是实数的思维延伸。四元数则是有3个虚数轴,而第四个数,垂直于全部3个虚数轴。四元数所描述的对四维空间的特殊作用与许多有着两种状态的量子系统有着紧密的联系。例如电子的旋转或者是光子的偏振。四维右手法则:一旦原创 2022-07-11 20:26:48 · 594 阅读 · 0 评论 -
[线性代数]矩阵变换在几何中的体现:缩放、翻转、切片、旋转、平移矩阵;放射变换
1.缩放矩阵几何图示对应公式x′=−xy′=y\begin{aligned}&x^{\prime}=-x \\&y^{\prime}=y\end{aligned}x′=−xy′=y[x′y′]=[sx00sy][xy]\left[\begin{array}{l}x^{\prime} \\y^{\prime}\end{array}\right]=\left[\begin{array}{cc}s_{x} & 0 \\0 & s_{y}\end原创 2022-04-13 17:16:45 · 1696 阅读 · 0 评论 -
傅里叶变换
傅里叶变换正向变换F(ω)=∫−∞∞f(x)e−2πiωxdxF(\omega)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i \omega x} d xF(ω)=∫−∞∞f(x)e−2πiωxdx傅里叶逆变换f(x)=∫−∞∞F(ω)e2πiωxdωf(x)=\int_{-\infty}^{\infty} F(\omega) e^{2 \pi i \omega x} d \omegaf(x)=∫−∞∞F(ω)e2πiωxdωeix=cosx+i原创 2022-04-13 20:58:41 · 8027 阅读 · 9 评论 -
[线性代数]矩阵的加、减、乘、幂运算
(1) 矩阵的加法和减法矩阵的加法和减法就是将两个矩阵对应位置上的数相加减。因此,相加减的两个矩阵 A,B\mathrm{A} , BA,B 的行列必须相同。(2) 矩阵乘法二阶矩阵乘法示例:[abcd][efgh]=[ae+bgaf+bhce+dgcf+dh]\left[\begin{array}{ll}a & b \\c & d\end{array}\right]\left[\begin{array}{ll}e & f \\g & h\end{ar原创 2022-04-13 14:31:30 · 4141 阅读 · 0 评论 -
余子式、代数余子式、伴随矩阵
余子式定义设矩阵 A=(aij)n×nA=\left(a_{i j}\right)_{n \times n}A=(aij)n×n, 将矩阵 AAA 的元素 aija_{i j}aij 所在的第行第 j\mathrm{j}j 列元素划去后, 到余的各元素按原来的排列顾序组成的 n−1n-1n−1 阶 矩脌所确定的行列式称为元古 aija_{i j}aij 的余子式,记为 MijM_{i j}Mij ,称 Aij=(−1)i−jMijA_{i j}=(-1)^{i-j} M_{i j}Aij=(原创 2022-04-13 12:31:48 · 32185 阅读 · 5 评论 -
叉乘、向量积的计算以及推导
叉乘几何图示:设有a=(ax,ay,az),b=(bx,by,bz)\mathbf{a}=\left(a_{x}, a_{y}, a_{z}\right), \mathbf{b}=\left(b_{x}, b_{y}, b_{z}\right)a=(ax,ay,az),b=(bx,by,bz)i,j,k分别是X,Y,Z轴方向的单位向量,则:a×b=(aybz−azby)i+(azbx−axbz)j+(axby−aybx)k\mathbf{a} \times \mathbf{b原创 2022-04-13 11:57:02 · 61210 阅读 · 1 评论 -
[线性代数]向量究竟是什么?
向量究竟是什么?物理专业的视角从物理专业的视角来看,向量是空间中的箭头,决定该向量的特征为它的长度以及它的方向,只要这两个特征相同,你可以自由移动一个向量而保持它不变。处在平面中的向量是二维的,而处在我们所生活的空间中的向量是三维的。计算机专业视角从计算机专业的视角来看,向量是有序的数字列表。例如,假设对房价进行分析,可以用二维向量对房屋进行建模。第一个数字表示房屋面积,第二个数字表示价格。在这里,“向量”只不过是“列表”的一个花哨的说法。之所以这个向量是二维的,是因为这个列表长度为2。原创 2022-04-19 18:44:04 · 877 阅读 · 0 评论