xgboost 原论文精读 原理推导 + sklearn参数讲解

本文详细解读XGBoost的梯度提升树,包括正则化目标函数、分裂算法以及sklearn中的参数设置。重点介绍了正则化在防止过拟合中的作用,以及shrinkage和列采样技术。同时,讨论了不同分裂算法的优缺点,并对sklearn中的关键参数进行了详细解释,如max_depth、learning_rate和subsample等。
摘要由CSDN通过智能技术生成

梯度提升树

现在站在大神的角度来回顾一下梯度提升树

正则化的目标函数

给定训练集D,含有n个样本m个特征

一个含有k棵树的集成模型
在这里插入图片描述
在这里插入图片描述
F当然就是回归决策树的空间啦。q是每棵树的结构,T是每个树的叶子数量。每棵树都有独立的树结构q以及叶子权重w。不同于决策树,每个回归树的叶子都包含了一个连续的分数,我们使用w同表示这个叶子的分数。举个例子来说,我们将使用给定树的决策规则来分类为叶子。那么最终的预测结果可以通过计算加总相对应叶子的分数来获取。
在这里插入图片描述
这个图在网上经常看到,但是很少人能够解释得清楚。应该这样理解,对于每个样本来说,依次放入不同的回归树中,看它最后落入哪个叶子里面。对每个的回归树中的对应叶子的分数进行加总最后得到的结果就是整个函数对应的预测。那为什么在这个图中,第一棵树是2呢,因为这个是加法模型,第一模型通常预测的分数比较大。

为了学到每个回归树模型,使用下面这个目标函数。在这里插入图片描述
很自然,目标函数=损失函数+正则项
原文说,正则项是用来平滑最终的叶子权重的以此避免过拟合。直观上,正则化目标倾向于选择一个使用简单的具有预测性的函数的模型。RGF已经在使用一个简单的正则化技术了。本文使用的目标函数以及相对应的算法比RGF更简单以及易于并行化。当正则化参数为零,那么目标函数退化为梯度提升树。

梯度提升树

用下面的公式来表示第i个样本的第t次迭代,现在我们需要添加一个树函数来最小化下面的目标函数:
在这里插入图片描述
这意味着我们将选择的是我们模型优化最大的树函数。二阶近似可用于在一般情况下快速优

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值