PSM 倾向性匹配(一)基础知识

本文介绍了PSM(倾向性得分匹配)的基础知识,包括处理效应的概念,如ATE、ATT、ATU,并探讨了选择难题及其在估计处置效应时的挑战。通过随机分组解决选择难题,但实际操作中往往难以实现。文章为理解因果推断提供理论基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:Ernnnn

b站:Ernnnn

公众号:统计分析分析
所有文章都在公众号,b站有视频版


PSM 倾向性匹配

1.基础知识

1.1 什么叫处理效应

对于个体 i i i而言,其未来收入为 y y y ,有
y i = { y 1 i  若  D i = 1 y 0 i  若  D i = 0 y_{i}=\left\{\begin{array}{ll}y_{1 i} & \text { 若 } D_{i}=1 \\ y_{0 i} & \text { 若 } D_{i}=0\end{array}\right. yi={ y1iy0i  Di=1  Di=0

而处置效应就是 y 1 i − y 0 i y_{1i} - y_{0i} y1iy0i,通俗来说就是如果一个人参加了这个活动的y减去不参加的y就等于处置效应。

聪明的同学就会问,这不是很简单吗?这当然不简单,这个y必须是同个体!不能用另外一个的不参加的y减。

所以严格来讲就是平行时空下,参加了A活动的你与未参加活动的你进行做差。

但这个事实上是不可能的,所以这个思想框架又称为反事实框架。

1.2ATE ATT ATU

上面讲了处理效应,是针对个体,个体一般是没有统计意义的,因此还需要消除个体差异,计算一大群人的处理效应,然后取期望即可得到稳健的结果。

根据人群不同,对应的也不同。

人群 简称 名称 公式
全体 ATE 平均处置效应 E ( y 1 i − y 0 i ) \mathrm{E}\left(y_{1i}-y_{0i}\right)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值