[多图]非线性格兰杰因果检验,eveiws详细实现步骤


     传统的 Granger 因果检验考察的是变量之间的线性因果关系,而且, 由于传统的 Granger 因果检验隐含假定潜在的数据生成过程( DGP)是线性的, 因此在实际的应用分析中常常是在 VAR 分析框架下,借助 F 检验来对变量间的线性因果关系进行检验。 然而,随着学术界对非线性研究的不断深入, 最新的研究表明传统的 Granger 因果检验方法可能存在着较大的局限性。 这是因为宏观经济变量以及金融时间序列常常呈现出复杂的非线性动态变化趋势.



    在实际的经济运行中,经济变量常常因体制变革、 金融危机等经济事件的冲击而产生结构性突变, 由此引发的体制区间效应使得变量在相互作用过程中呈现出显著的非线性特征。 然而, 传统的 Granger 因果检验方法考察的是变量之间的线性因果关系, 无法发现变量间实际存在的非线性因果关系, 更重要的是, 当时间序列存在显著的非线性趋势, 采用传统的 Granger 因果检验方法 可 能 导 致 结 论 出 现 明 显 偏 差 .

    

    为了克服上述传统 Grange 因果检验方法的局限性, 新一代的非线性检验方法也应运而生,其中, 最具代表性的研究包括 Hiemstra 和 Jones( 1994)与 Diks和 Panchenko( 2006) .


    需要准备的工具:

  1. eviews 

  2. GCTEST (作者panchenko编写的原生工具)

(如果没有的话,可以留言发送给你,需关注wx公众号:统计分析分析)

    

    步骤:

    1.建立var模型剔除线性

    2.生成残差进行bds检验

    3.运行gctest得到非线性因果检验结果


    详细步骤:

    1.把变量作为一个group打开,并点击:


2.输出残差,点击:

3.打开残差数据,进行bds检验

 

点击,view>bds test 即可


结果如下:













Dimension

BDS  Statistic

Std. Error

z-Statistic

Prob.


 2

 0.003186

 0.007789

 0.409095

 0.6825


 3

 0.019139

 0.012452

 1.537117

 0.1243


 4

 0.029937

 0.014913

 2.007445

 0.0447


 5

 0.025943

 0.015633

 1.659536

 0.0970


 6

 0.026744

 0.015162

 1.763812

 0.0778


得到相关方程的bds检验结果


4.导出残差,

保存为纯数据的txt格式

最后打开gctest软件,输入如下:


如果需要询问相关知识请关注公众号: 统计分析分析


©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页