207. 课程表
现在你总共有 n 门课需要选,记为 0
到 n-1
。
在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1]
给定课程总量以及它们的先决条件,判断是否可能完成所有课程的学习?
示例 1:
输入: 2, [[1,0]] 输出: true 解释: 总共有 2 门课程。学习课程 1 之前,你需要完成课程 0。所以这是可能的。
示例 2:
输入: 2, [[1,0],[0,1]] 输出: false 解释: 总共有 2 门课程。学习课程 1 之前,你需要先完成课程 0;并且学习课程 0 之前,你还应先完成课程 1。这是不可能的。
说明:
- 输入的先决条件是由边缘列表表示的图形,而不是邻接矩阵。详情请参见图的表示法。
- 你可以假定输入的先决条件中没有重复的边。
提示:
- 这个问题相当于查找一个循环是否存在于有向图中。如果存在循环,则不存在拓扑排序,因此不可能选取所有课程进行学习。
- 通过 DFS 进行拓扑排序 - 一个关于Coursera的精彩视频教程(21分钟),介绍拓扑排序的基本概念。
-
拓扑排序也可以通过 BFS 完成。
解题思路:这个问题相当于查找一个循环是否存在于有向图中。深度优先搜索和广度优先搜索都可以解决该问题。下面介绍广度优先搜索:使用字典graph{母课程:[子课程1,子课程2,...]}代表母课程到子课程的有向边;使用字典indegrees{课程:入度}记录课程的母课程数量。那么只需要对graph选取n次,在每次选取时,选取入度等于零的节点,并将该节点入度置为-1,将该节点的子课程入度-1即可,若在某次选取时没有入度为零的节点,说明图中存在环,直接返回Fasle。在成功选取n次后,说明无环,返回True。
Python3代码如下:
class Solution(object):
def canFinish(self, numCourses, prerequisites):
"""
:type numCourses: int
:type prerequisites: List[List[int]]
:rtype: bool
"""
graph = collections.defaultdict(list)
indegrees = collections.defaultdict(int)
for u,v in prerequisites:
graph[v].append(u)
indegrees[u] += 1
for i in range(numCourses):
zero_indegree = False
for j in range(numCourses):
if indegrees[j] == 0:
zero_indegree = True
break
if not zero_indegree:
return False
indegrees[j] = -1
for node in graph[j]:
indegrees[node] -= 1
return True