基于Python京东手机销售数据分析

本文介绍了一款基于Python的京东手机销售数据分析系统,利用爬虫抓取数据、Flask构建后端、Echarts进行数据可视化。系统功能包括品牌排名、价格分布、店铺评价等分析,助力企业了解商品销售状况。创新点在于提升数据可视化的用户接受度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述 包含内容:文档+源代码+爬虫代码+效果演示视频+数据库

基于Python京东手机销售数据分析

演示视频

演示-京东手机销售分析

数据集

  • 京东手机数据

技术

  • Python、Flask、Echarts、Pandas

功能

该项目具备以下主要功能:

  • 手机品牌排名分析及展示
  • 手机价格分布分析及展示
  • 店铺数量排行分析及展示
  • 好评数量分析及展示
  • 差评数量分析及展示
  • 评论数量分析及展示
  • 好评率排行分析及展示
  • 生成标题词云

摘要

随着电商渠道的开通,不但很大程度上降低了宣传推广的成本,而且还增加了以往的交易领域,给企业带来了获取收益得商业机会。若是真的想要在电商行业稳住脚并稳步前进,电商和企业必须要花费大量的时间和精力去研究商品销售状况。因此通过本文的研究,可以帮助企业研究商品销售状况,以及买家的心理趋向,对于顾客来说也能够直观的看出商品信息的优劣,评价数量的比较以及品牌之间的比较等等。本分析系统的商品数据需求是通过爬取京东的网页,分析手机商品数据和评价数据,通过Python爬虫工具编写代码,在web框架上选择Django作为开发框架,数据可视化选择了简单的Echarts。

创新点

通过对商品数据的分析,该项目能够实现以下创新点:

  • 让顾客快速了解这类商品的整体情况
  • 可视化的方法提高用户的接受度

私聊我吧

https://mbd.pub/o/bread/mbd-ZZaam55r

基于Python进行京东用户行为数据分析,一般会涉及以下几个步骤: 1. **数据获取**: - 使用`selenium`或`requests`配合`BeautifulSoup`库,模拟浏览器请求抓取京东商品页面的数据,包括用户浏览记录、购买历史等。 2. **数据结构存储**: - 将网页源码转化为适合分析的DataFrame,可以使用pandas库。 3. **数据预处理**: - 清洗数据,去除空值、异常值,标准化日期格式。 - 对缺失的数据使用填充策略(如平均值、众数)。 4. **用户行为分析**: - 挖掘用户的购物频率、浏览路径、停留时间等行为特征。 - 可能还会计算用户购买转化率、复购次数等指标。 5. **关联规则挖掘**: - 使用Apriori或FP-Growth算法,发现用户的购物篮模式或关联商品。 6. **用户细分**: - 应用聚类或分类算法(如K-means、决策树或随机森林)将用户划分为不同的群体。 7. **个性化推荐**: - 基于用户的购买历史和行为特征,构建协同过滤或基于内容的推荐系统。 8. **可视化展示**: - 使用matplotlib或seaborn库制作直观的报告,如用户活跃度图表、购买力对比图等。 ```python # 示例代码片段 import pandas as pd from bs4 import BeautifulSoup import requests def get_user_data(url): # ... 网络请求和解析部分 ... df = pd.DataFrame(data) df['purchase_date'] = pd.to_datetime(df['purchase_date']) # 转换日期格式 # ... 继续进行后续的数据清洗和分析操作 ... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OverlordDuke

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值