第六章_定积分的应用

本文探讨了二重积分在解决几何问题中的应用,包括平面图形的面积、旋转体体积、曲线弧长及旋转体侧面积的计算。通过二重积分的方法,可以更通用地处理这些问题,尤其在面对非坐标轴旋转时,这种方法显得更为高效。同时,强调了在求解弧长和侧面积时必须使用ds,而面积和体积则可用dx。此外,还提到了这些概念在物理应用中的作用,如压力、变力做功和引力。文章提供了常见题型与典型例题,帮助读者巩固理解和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

6.1 几何应用

6.1.1平面图形的面积
6.1.2旋转体体积
6.1.3曲线弧长
6.1.4旋转体侧面积

从二重积分的角度复习平面图形的面积以及旋转体的体积

6.1.1 平面图形的面积

在这里插入图片描述

平面图形的面积根据直角坐标系与极坐标系有两种不同的方法,需要掌握两种公式;
其实换一种思路,其面积实质上是在该区域对1作二重积分,故而不需要再记忆公式。
上图中,
直角坐标系下,先对x后对y
极坐标系下,先对cita,后对rou

6.1.2 旋转体的体积

在这里插入图片描述
上述公式为传统方法,只适用于围绕坐标轴旋转的情形,当旋转轴围绕非坐标轴时,只能由元素法思想自己推导,虽不失为一种方法,但对于考研来说,并不是最佳(效率最高)方法。

旋转体体积一般问题
同面积一样,用二重积分的思想做在这里插入图片描述在这里插入图片描述

从二重积分的角度复习旋转体体积

6.1.3 曲线弧长

在三种不同形式下的方程,求弧微分的形式不同
在这里插入图片描述

6.1.4 旋转体侧面积

在这里插入图片描述

关于侧面积使用dx和ds的选择,
牵扯到微元法和元素法的基本原理,先找这个区间上对应量的近似值,然后找微元,然后再积分,但这个近似值有精度要求,即找到的近似值忽略掉的是x的高阶无穷小,若是用dx,则丢掉的就不是高阶无穷小了,所以必须用ds

总结:这里有四个问题,面积,体积,弧长,侧面积;
对于后面两种(弧长和侧面积,都必须用ds),而面积和体积可以用dx

6.2 物理应用

一般就三种问题:压力、变力做功、引力

6.3 常考题型与典型例题

(一)平面域面积和旋转体体积的计算

【真】

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值