整合ing至第三章____一元函数积分学
一、不定积分的概念与性质
(三)不定积分的几何意义
- 从几何上看,不定积分是原函数的一簇积分曲线,这些曲线两两相差一个常数 C C C
二、不定积分的基本公式
三、三种主要积分法
“2+1”(2种换元法+1种分部积分法)
前面所学的求导法则中有两条最核心的法则:
① 有理运算:包括:加、减、乘、除
② 复合函数求导法则
将其倒过来应用在积分中
所以积分的主要方法就是将求导数的主要方法倒过来即可
不定积分结果的形式不唯一,求导验证
- 导数的和差运算法则倒过来:得出拆项积分法(积分的和差等于和差的积分)
- 导数的乘法运算法则倒过来:得出分部积分法
- 除法法则倒过来太难用,用得少
- 复合函数倒过来就是两类换元积分法
(一)第一换元积分法(凑微分法)
(二)第二换元积分法(真·换元法)
第二类换元积分法是真正地替换了变量,后面需要反函数还原回来
关键在于变量代换选谁?
原则只有一个,怎么简单怎么来
【常用三种变量代换】
主要用来处理根式
- 被积函数含有 a 2 − x 2 \sqrt{a^2-x^2} a2−x2 ,令 x = a ⋅ s i n t x=a·sint x=a⋅sint(或 a ⋅ c o s t a·cost a⋅cost)
- 被积函数含有 a 2 + x 2 \sqrt{a^2+x^2} a2+x2 ,令 x = a ⋅ t a n t x=a·tant x=