梯度下降---偏导数及其几何意义

在一元函数中,我们已经知道导数就是函数的变化 率。对于二元函数我们同样要研究它的“变化率”。然

而,由于自变量多了一个,情况就要复杂的多。

一、几何意义

  在xOy平面内,当动点由P(x0,y0)沿不同方向变化时,函数f(x,y)的变化快慢一般说来是不同的,因此就需要研究f(x,y)在(x0,y0)点处沿不同方向的变化率。

   偏导数表示固定面上一点的切线斜率

假设ƒ是一个多元函数。例如:

 f(x, y) = x^2 + xy + y^2
f = x2 + xy + y2的图像。
我们希望求出函数在点(1, 1, 3)的对x的偏导数;对应的切线与xOz平面平行。

因为曲面上的每一点都有无穷多条切线,描述这种函数的导数相当困难。偏导数就是选择其中一条切线,并求出它的斜率。通常,最感兴趣的是垂直于y轴(平行于xOz平面)的切线,以及垂直于x轴(平行于yOz平面)的切线。

这是图中y = 1时的图像片段。

一种求出这些切线的好办法是把其他变量视为常数。例如,欲求出以上的函数在点(1, 1, 3)的与xOz平面平行的切线,我们把变量y视为常数。右图中显示了函数的图像以及这个平面。左图中显示了函数在平面y = 1上是什么样的。通过求出这个图中的切线,我们发现ƒ在点(1, 1, 3)的与xOz平面平行的切线的斜率是3。我们把它记为:

\frac{\part f}{\part x} = 3

在点(1, 1, 3),或称“f在(1, 1, 3)的关于x的偏导数是3”。

二、定义

  在这里我们只学习函数f(x,y)沿着平行于x轴平行于y轴两个特殊方位变动时,f(x,y)的变化率。

  偏导数的算子符号为:∂

  偏导数反映的是函数沿坐标轴正方向的变化率。

设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点.把y固定在y0而让x在x0有增量△x,相应地函数z=f(x,y)有增量(称为对x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

  如果△z与△x之比当△x→0时的极限存在,那么此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数(partial derivative)。记作f'x(x0,y0)。

 y方向的偏导

  函数z=f(x,y)在(x0,y0)处对x的偏导数,实际上就是把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数

  同样,把x固定在x0,让y有增量△y,如果极限存在 那么此极限称为函数z=(x,y)在(x0,y0)处对y的偏导数。记作f'y(x0,y0)

 三、高阶偏导数

如果二元函数z=f(x,y)的偏导数f'x(x,y)与f'y(x,y)仍然可导,那么这两个偏导函数的偏导数称为z=f(x,y)的二阶偏导数。  二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy.

  注意:f"xy与f"yx的区别在于:前者是先对x求偏导,然后将所得的偏导函数再对y求偏导;后者是先对y求偏导再对x求偏导.当f"xy与f"yx都连续时,求导的结果与先后次序无关。

<think>嗯,用户问的是“什么是偏导数”。好,我需要先回忆一下偏导数的定义和相关概念。偏导数是多元函数微积分里的基本概念,和普通数有什么不同呢?对了,普通数是针对单变量函数的,而偏导数处理的是多变量函数中的一个变量变化对函数值的影响,其他变量保持不变。 首先,我应该从多变量函数讲起。比如,函数z = f(x, y),这时候有两个自变量x和y。当求关于x的偏导数时,y就被当作常数来处理,对吗?这时候需要解释符号∂的使用,比如∂f/∂x,并给出具体的计算例子,比如f(x,y)=x²y + sin(y),求x的就是2xy,因为sin(y)对x来说是常数,数为0。这样用户可能更容易理解。 然后,要说明几何意义偏导数几何意义函数在某点沿着坐标轴方向的切线斜率。比如,∂f/∂x是在x轴方向上的变化率,而∂f/∂y则是y轴方向的。可能需要画图或者用三维图像来辅助说明,不过因为是文字解释,可以描述一下,比如固定y的值,看x变化时的曲线斜率。 接下来,用户可能想知道为什么需要偏导数。这时候需要提到多元函数的变化可能依赖于多个变量,而偏导数帮助我们单独分析每个变量的影响。例如,物理学中的温度分布随空间位置变化,可能需要分别考虑x、y、z方向的温度梯度。 还有,要提到高阶偏导数,比如二阶,以及混合偏导数的情况,比如∂²f/∂x∂y和∂²f/∂y∂x是否相等,可能需要说明Clairaut定理,当函数满足连续性时,混合偏导数相等。 应用方面,可以举一些例子,比如优化问题中的梯度,或者经济学中的边际成本分析。例如,生产成本可能依赖于劳动力和资本,偏导数可以分别看每增加一单位劳动力或资本对成本的影响。 另外,需要注意常见误区,比如处理偏导数时,其他变量必须保持恒定,但在实际应用中是否总是这样?比如隐函数时可能会有不同的情况,但这里可能不需要深入,保持基础解释即可。 最后,可能需要总结偏导数在多元微积分中的重要性,作为梯度、方向数等概念的基础,以及在实际问题中的应用价值。确保语言通俗易懂,避免过于数学化的术语,但也要准确无误。 在组织内容的时候,需要分步骤,先定义,再几何意义,计算方法,例子,应用,这样结构比较清晰。同时,注意使用中文表达,数学公式需要用$$包裹独立公式,行内用$符号。比如,当给出例子时,用$f(x,y)=x^2 y + \sin(y)$,然后偏导数计算步骤展示∂f/∂x = 2xy,用行内公式,而独立公式的话,比如定义式可能需要用$$...$$。 检查LaTeX语法是否正确,比如积分符号、上下标等是否正确转义。例如,积分表达式是否正确写成$\int_{-\pi}^{\pi}$,确保括号匹配。 另外,用户可能希望了解偏导数和全数的区别,是否需要简要提及?比如全数考虑所有变量同时变化的影响,而偏导数是单一变量。但根据问题,可能不需要展开,但可以稍微提到,以帮助区分概念。 总之,回答的结构应该是:定义→几何意义→计算方法→例子→应用→注意事项或常见问题。这样用户能够逐步理解,从基础到应用,逻辑清晰。</think>### 什么是偏导数偏导数是**多元函数**对**其中一个自变量**的变化率的度量,**其他自变量保持固定**。它是普通数(单变量函数数)向多维空间的自然推广,用于分析多变量系统中单个变量对函数值的影响。 --- ### 核心理解分步说明 #### 1. **定义** 设函数 $z = f(x_1, x_2, \dots, x_n)$ 有多个自变量,则对变量 $x_i$ 的偏导数定义为: $$ \frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_n) - f(x_1, \dots, x_n)}{h} $$ **关键**:计算时**仅允许$x_i$变化**,其他变量视为常数。 --- #### 2. **几何意义** -二元函数 $z = f(x, y)$,偏导数 $\frac{\partial f}{\partial x}$ 表示在点 $(x_0, y_0)$ 处,沿 $x$ 轴方向的切线斜率。 - 类似地,$\frac{\partial f}{\partial y}$ 是沿 $y$ 轴方向的切线斜率。 --- #### 3. **计算方法** **步骤示例**:计算 $f(x, y) = x^2 y + \sin(y)$ 的偏导数 1. **对 $x$ 求**(固定 $y$): $$ \frac{\partial f}{\partial x} = 2xy + 0 = 2xy $$ 2. **对 $y$ 求**(固定 $x$): $$ \frac{\partial f}{\partial y} = x^2 + \cos(y) $$ --- #### 4. **应用场景** - **物理学**:分析温度场中某点沿不同方向的温度变化。 - **经济学**:计算生产成本对劳动力或资本的敏感度(边际分析)。 - **优化问题**:梯度下降法中使用偏导数寻找函数最小值。 --- #### 5. **高阶偏导数** - 二阶偏导数:对偏导数再次求,如 $\frac{\partial^2 f}{\partial x^2}$ 或混合 $\frac{\partial^2 f}{\partial x \partial y}$。 - **Clairaut定理**:若函数连续可微,混合与求顺序无关,即: $$ \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} $$ --- ### 总结 偏导数通过“固定其他变量”简化了多变量问题的分析,是研究多元函数性质(如梯度、极值)的基础工具。理解它对掌握机器学习、物理建模等领域至关重要。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Soyoger

听说打赏的都进了福布斯排行榜。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值