Caffe+Ubuntu16.04+GTX1080+CUDA8.0+SSD配置+Loss曲线绘制

先说明一点我的配置环境,Dell precision power3620的工作站,GTX1080GPU,CUDA8.0,cudnn7,Opencv3.1,Ubuntu16.04系统,Caffe。Caffe的配置这里就不多介绍了,可以参考这篇博客
http://blog.csdn.net/zouyu1746430162/article/details/54095807

在配置Caffe的过程中,这篇博客写的很详细,这里说明以下几点:

  • 1. Makefile.config文件的修改:
    在打开Makefile.config文件,如下图红色框里的部分,这部分根据自己电脑GPU的计算能力进行相应的修改,GPU计算能力参考链接:https://developer.nvidia.com/cuda-gpus。GTX1080计算能力是6.1,如果最后两行不是61就要改为61,同时去掉前面sm_20,sm_21。
    这里写图片描述
-下图是针对我的配置环境修改的CUDA_ARCH

这里写图片描述

  • 2. 配置的过程中遇到一个小问题:
    在make all -j8 通过之后,进行make runtest -j8测试的时候报错了,大概就是在GPU模块的地方出错了,查了很多的资料,最后的解决方案就是添加sudo 进行sudo make runtest -j8就可以了。接着执行make pycaffe也通过了。但后来在实际的使用过程中,进行相关的模型生成训练时就有问题了。执行bash脚本文件进行训练的话,也要添加sudo 才能进行训练,例如执行sudo bash examples/mnist/train_lenet.sh能正常的进行训练,去掉sudo 就不行,就会在GPU模块报错。要是调用python接口进行训练就完全不行了,执行python XXX.py文件进行训练的话同样在GPU模块报错。于是我参考前面的经验执行sudo python XXX.py,这时候报错信息就是no module named caffe。出现这个错误的原因就是我在配置python接口的时候执行的是make pycaffe,不是执行的sudo make pycaffe,所以不能加sudo 进行Python接口的调用。踩了这么些个坑之后,我决定重新配置。执行make clean之后,执行sudo su获取root权限,然后在root环境下进行Caffe配置,这样配置下来就完全可以正常使用了。当然每次使用的时候都要先获取root权限,然后再使用Caffe。
  • 3. 环境变量的配置:
    走完上面的步骤后,在环境变量配置的时候,运行vim .bashrc 打开.bashrc文件,在最后添加下面的语句,同样的vim /etc/profile打开profile文件,在最后也添加下面的语句。
export PYTHONPATH=/home/name/caffe_name/python:$PYTHONPATH #name 修改为你的账户名,caffe_name修改为根目录下你的caffe文件夹名,从github下载caffe不修改文件名称的话这里就是caffe-master。

添加完之后执行source .bashrc和source /etc/profile使环境变量的配置生效,source,vim命令都是在根目录下执行的。

以上就是Caffe的全部配置内容。(如有错误还请大家多多批评指正)

SSD的Caffe配置

SSD的配置可以参考这篇博客:http://blog.csdn.net/jesse_mx/article/details/52769272
SSD的训练参考这篇博客:http://blog.csdn.net/sinat_31802439/article/details/52958791
我在修改ssd_pascal.py文件里面的gpus=’0’,batch_size = 16后开始正常训练。下面是部分截图。
这里写图片描述


SSD绘制loss曲线

loss曲线的绘制参考这篇博客:http://blog.csdn.net/10km/article/details/71191694
绘制曲线的思路就是将训练过程的输出信息生成log日志文件,文件名的后缀一定要是.log,再使用bash parse_log.sh XXX.log命令对日志文件解析生成.log.train和.log.test两个解析文件。最后使用gnuplot进行绘制曲线
下面是训练60000次后绘制的loss图形:
这里写图片描述


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值