RAG系统进阶

文本分割的粒度

缺陷

  1. 粒度太大可能导致检索不精准,粒度太小可能导致信息不全面
  2. 问题的答案可能跨越两个片段

改进: 按一定粒度,部分重叠式的切割文本,使上下文更完整

from nltk.tokenize import sent_tokenize
import json


def split_text(paragraphs, chunk_size=300, overlap_size=100):
    '''按指定 chunk_size 和 overlap_size 交叠割文本'''
    sentences = [s.strip() for p in paragraphs for s in sent_tokenize(p)]
    chunks = []
    i = 0
    while i < len(sentences):
        chunk = sentences[i]
        overlap = ''
        prev_len = 0
        prev = i - 1
        # 向前计算重叠部分
        while prev >= 0 and len(sentences[prev])+len(overlap) <= overlap_size:
            overlap = sentences[prev] + ' ' + overlap
            prev -= 1
        chunk = overlap+chunk
        next = i + 1
        # 向后计算当前chunk
        while next < len(sentences) and len(sentences[next])+len(chunk) <= chunk_size:
            chunk = chunk + ' ' + sentences[next]
            next += 1
        chunks.append(chunk)
        i = next
    return chunks

检索后排序(选)

问题: 有时,最合适的答案不一定排在检索的最前面

混合检索(Hybrid Search)(选)

实际生产中,传统的关键字检索(稀疏表示)与向量检索(稠密表示)各有优劣。

举个具体例子,比如文档中包含很长的专有名词,关键字检索往往更精准而向量检索容易引入概念混淆。

# 背景说明:在医学中“小细胞肺癌”和“非小细胞肺癌”是两种不同的癌症

query = "非小细胞肺癌的患者"

documents = [
    "玛丽患有肺癌,癌细胞已转移",
    "刘某肺癌I期",
    "张某经诊断为非小细胞肺癌III期",
    "小细胞肺癌是肺癌的一种"
]

query_vec = get_embeddings([query])[0]
doc_vecs = get_embeddings(documents)

print("Cosine distance:")
for vec in doc_vecs:
    print(cos_sim(query_vec, vec))
Cosine distance:
0.891300758103824
0.8897648918974225
0.9040803406710733
0.9132102982983258

所以,有时候我们需要结合不同的检索算法,来达到比单一检索算法更优的效果。这就是混合检索

混合检索的核心是,综合文档 d d d 在不同检索算法下的排序名次(rank),为其生成最终排序。

一个最常用的算法叫 Reciprocal Rank Fusion(RRF)

KaTeX parse error: Can't use function '$' in math mode at position 2: $̲rrf(d)=\sum_{a\…
其中 A A A 表示所有使用的检索算法的集合, r a n k a ( d ) rank_a(d) ranka(d) 表示使用算法 a a a 检索时,文档 d d d 的排序, k k k 是个常数。

很多向量数据库都支持混合检索,比如 WeaviatePinecone 等。也可以根据上述原理自己实现。

RAG-Fusion(选)

RAG-Fusion 就是利用了 RRF 的原理来提升检索的准确性。

image-20240508103605361

向量模型的本地加载与运行

划重点:

  1. 不是每个 Embedding 模型都对余弦距离和欧氏距离同时有效
  2. 哪种相似度计算有效要阅读模型的说明(通常都支持余弦距离计算)

PDF 文档中的表格怎么处理(选)

image-20240508104210888

  1. 将每页 PDF 转成图片

  2. 识别文档(图片)中的表格

  3. 基于 GPT-4 Vision API 做表格问答

  4. 用 GPT-4 Vision 生成表格(图像)描述,并向量化用于检索

一些面向 RAG 的文档解析辅助工具

  • PyMuPDF: PDF 文件处理基础库,带有基于规则的表格与图像抽取(不准)
  • RAGFlow: 一款基于深度文档理解构建的开源 RAG 引擎,支持多种文档格式
  • Unstructured.io: 一个开源+SaaS形式的文档解析库,支持多种文档格式

在工程上,PDF 解析本身是个复杂且琐碎的工作。以上工具都不完美,建议在自己实际场景测试后选择使用。

总结

RAG 的流程

  • 离线步骤:
    1. 文档加载
    2. 文档切分
    3. 向量化
    4. 灌入向量数据库
  • 在线步骤:
    1. 获得用户问题
    2. 用户问题向量化
    3. 检索向量数据库
    4. 将检索结果和用户问题填入 Prompt 模版
    5. 用最终获得的 Prompt 调用 LLM
    6. 由 LLM 生成回复

我用了一个开源的 RAG,不好使怎么办?

  1. 检查预处理效果:文档加载是否正确,切割的是否合理
  2. 测试检索效果:问题检索回来的文本片段是否包含答案
  3. 测试大模型能力:给定问题和包含答案文本片段的前提下,大模型能不能正确回答问题
  • 18
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值