2020考研数学一大纲之完全解析(五)

本节大纲内容

考试要求

  1. 理解多元函数的概念,理解二元函数的几何意义.
  2. 了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.
  3. 理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.
  4. 理解方向导数与梯度的概念,并掌握其计算方法.
  5. 掌握多元复合函数一阶、二阶偏导数的求法.
  6. 了解隐函数存在定理,会求多元隐函数的偏导数.
  7. 了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.
  8. 了解二元函数的二阶泰勒公式.
  9. 理解多元函数极值和条件极值的概念
  10. 掌握多元函数极值存在的必要条件.
  11. 了解二元函数极值存在的充分条件,会求二元函数的极值.
  12. 会用拉格朗日乘数法求条件极值
  13. 会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.

考试内容

  • 多元函数的概念以及几何意义

    一元函数描述的是一个因变量与一个自变量之间的确定性关系,但实际中往往会遇到一个因变量与多个自变量之间的关系问题。
    定义:
    设有三个变量x,y和z,D是平面上的非空点集,如果对于D内的每一点(x,y),变量z按照一定法则f总有确定的数值与之对应,则z称为x,y的二元函数,记作
    在这里插入图片描述
    其中D为定义域,而x,y为自变量,z为因变量。
    f(x,y)在点(x0,y0)处对应的值记作f(x0,y0),称为f(x,y)在点(x0,y0)处的函数值,函数值的全体所构成的集合称为f(x,y)的值域,记作f(D),即
    在这里插入图片描述
    与一元函数的情形一样,二元函数的定义中,起决定作用的仍是对应法则和定义域。
    是二元函数有意义的自变量(x,y)的取值全体所组成的集合称为自然定义域。但在实际中,函数的定义域必须根据问题的背景确定。
    设函数z=f(x,y)的定义域为D,任取一点P(x,y)∈D,其对应的函数值z=f(x,y),这便在空间中确定一点M(x,y,z),且M随P变化而变化。P取遍D中一切点时,点M在空间中的几何轨迹就为二元函数z=f(x,y)的图像。
    一般来说,二元函数的图像是空间中的一张曲面。
    二元函数有关概念可以推广到二元以上的情形,二元及二元以上的函数统称为多元函数。
    一般地,n元函数的定义域为n维空间的点集,而n>=3时,n元函数不再具有直观的几何意义。
    无论是一元函数还是多元函数,自变量的取值均可看作点的坐标,从而表示为定义域内动点的函数——点函数。
    多元函数的四则运算与一元函数的情形类似。

  • 二元函数的极限与连续的概念

    对于二元函数f(x,y),当动点P(x,y)沿任何方式无限接近于定点P0(x0,y0)时,函数值f(x,y)均无限接近于常数A,A就为f(x,y)在点P0处的极限值。
    二元函数的极限又称二重极限,其中P->P0的确切含义是|PP0|->0,且P不等于P0。在一元函数的极限中,x->x0只有两种方式,但在二元函数的极限中,P->P0有无限多的方式,难以想象。
    二元函数在某一点的极限是否存在,与它在该点处有无定义无关。
    如二元函数的极限存在,则点P沿任何方式趋近于P0时,f(x,y)都趋近于同一个值。换言之,若点P沿两条不同的路径趋近于点P0时,f(x,y)趋于不同的值,则二元函数在点P0处的极限必不存在,这是判定极限不存在的有效方法。
    一元函数求极限的方法,诸如极限的四则运算、复合函数的极限运算法则、无穷小的运算法则、夹逼准则,等等,同样适用于二元函数的情形。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    定义表明,函数f(x,y)在点P0处连续不仅要求f(x,y)在点P0处与定义,同时还要求极限存在,且极限等于点P0处的函数值。
    若函数f(x,y)在D上每一点都连续,则称函数f(x,y)在D上连续或f(x,y)是D上的连续函数。

  • 有界闭区域上多元连续函数的性质

    在这里插入图片描述

  • 多元函数的偏导数与全微分

    在这里插入图片描述
    如要了解偏导数的几何意义,请点击下方链接
    偏导数的几何意义
    在这里插入图片描述

  • 全微分存在的必要条件和充分条件

    全微分存在的必要条件:
    (1)f(x,y)在点(x0,y0)连续。
    (2)f(x,y)在点(x0,y0)的偏导数存在。
    全微分存在的充分条件:
    (1)f(x,y)在点(x0,y0)的偏导数存在,且偏导数在(x,y)连续。
    全微分存在的充要条件:
    在这里插入图片描述

  • 多元复合函数、隐函数的求导法

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    多个约束条件的情形看似复杂,其实就是解方程组。利用线性代数中的克拉默法则去看待这个解法就简单多了。
    关于克拉默法则,请参照线性代数的内容。

  • 二阶偏导数

在这里插入图片描述
在这里插入图片描述

  • 方向导数和梯度

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  • 空间曲线的切线和法平面,曲面的切平面和法线

    在这里插入图片描述
    注意:
    在这里插入图片描述
    这里是向量的乘法。用矩阵来解。

  • 二元函数的二阶泰勒公式

    了解即可,没必要深究。在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述在这里插入图片描述

  • 多元函数的极值和条件极值

    在这里插入图片描述
    在这里插入图片描述在这里插入图片描述

  • 多元函数的最大值、最小值及其简单应用

    极值仅是函数在某点邻域内的最值,是函数的局部特征。而在区域D上的最值,则是函数在D上的全局特征。
    关于函数f(x,y)的最值问题,主要讨论以下两种常见的情况。
    1、函数在f(x,y)在有界闭区域D上的最值。
    假若f(x,y)在有界闭区域D上连续,则在D上必能取得最大值M和最小值m。最值在D的内部取得时,最值点必为极值点,即驻点。最值在D的边界上取得时,求出f(x,y)在边界上的最值即可。
    根据以上分析,求最值的方法如下:
    (1)求出f(x,y)在区间D上的所有驻点处的函数值。
    (2)求出f(x,y)在边界上可能为最值的函数值。
    (3)比较(1)(2)中的函数值,最大者为最大值,最小者为最小值。
    2、若函数f(x,y)的最值在开区域D内取得,且D中只有唯一的驻点P0,则P0就是函数f(x,y)在区域D的最值。

  • 补充

  • 连续,可偏导,全微分的关系

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    注意:图中箭头的不可逆性。

  • 全微分不变性

    在这里插入图片描述
    在这里插入图片描述

  • 变换求偏导

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值