2020考研数学一大纲之完全解析(四)

本文深入探讨了向量代数与空间解析几何的基本概念,包括向量运算、坐标表达、平面与直线方程、曲面方程及空间曲线方程等内容。详细讲解了向量的线性运算、数量积、向量积与混合积,以及如何运用这些知识解决空间几何问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本节大纲内容

考试要求

  1. 理解空间直角坐标系,理解向量的概念及其表示.
  2. 掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.
  3. 理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.
  4. 掌握平面方程和直线方程及其求法.
  5. 会求平面与平面、平面与直线、直线与直线之间的夹角.
  6. 会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.
  7. 会求点到直线以及点到平面的距离.
  8. 了解曲面方程和空间曲线方程的概念.
  9. 了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.
  10. 了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.

考试内容

  • 向量的概念

    在这里插入图片描述

  • 向量的线性运算,向量的数量积和向量积

    在这里插入图片描述
    在这里插入图片描述

  • 向量的混合积

    定义:
    abc 是三个向量,(a x b) · c 称为三个向量abc的混合积,记作[a b c]或[a,b,c],即
    [a b c] = (a x b) · c = | a x b| |c| cos⁡β
    其中 β是向量 (a x b) 与 c 的夹角。
    先向量积后数量级,最终结果是一个实数。

    三向量的混合积的几何意义:

    它的绝对值 |(a x b) · c| 表示以abc 为棱的平行六面体的体积。
    根据右手定则,确定混合积的符号。

    如果[a b c] = 0,即平行六面体的体积为零,也就是说 a,b,c 共面。由此可知三向量共面的充要条件是三向量的混合积为零。
    在这里插入图片描述

    向量的混合积的运算性质:
    (1)(a,b,c) = (b,c,a) = (c,a,b). // 注意本性质的顺序性
    (2)(k a,b,c) = ( a,kb,c) = ( a,b,kc) = k( a,b,c).
    (3)(a1+a2,b,c) = (a1,b,c) + (a2,b,c)

  • 两向量垂直、平行的条件

    (1)两个非零向量ab平行的充分必要条件是 a = βb.
    (2)在坐标系下,两向量平行的充要条件是对应坐标成比例。
    (3)两向量垂直的充要条件是两向量的数量积为零,即 a · b = 0。
    (4)在坐标系下,两向量垂直的充要条件是用坐标运算等于零。
    在这里插入图片描述

  • 两向量的夹角

    利用向量的数积即可计算。
    在这里插入图片描述

  • 向量的坐标表达式及其运算

    在这里插入图片描述

  • 单位向量

(1)基本单位向量:针对坐标系来说的,坐标系正向的单位化 。
(2)非零向量a的单化:在这里插入图片描述

  • 方向数与方向余弦

    在这里插入图片描述
    方向数和方向角是不同的。
    关于方向数:

在这里插入图片描述

  • 曲面方程和空间曲线方程的概念

    在这里插入图片描述

    建立了空间曲面及其方程的联系后,就可以通过研究方程来了解曲面的几何性质,与平面解析几何类似,空间解析几何主要研究两个基本问题:
    在这里插入图片描述
    为了讨论方便,先简单介绍平面的一般方程
    空间中任一平面方程可以用三元一次方程
    在这里插入图片描述
    来表示,反之亦然。其中A,B,C是不全为零的常数。此方程称为平面的一般方程。特别地,xOy、yOz、xOz平面的方程是z = 0,x = 0,y = 0。而x = c,y = c,z = c分别表示平行于坐标面yOz、xOz、xOy的平面。

常见曲面

  • 球面

  • 柱面

  • 旋转曲面

  • 常用的二次曲面方程及其图形

    点击下方常见曲面即可。
    常见曲面
    在这里插入图片描述

  • 空间曲线的参数方程和一般方程

    在这里插入图片描述
    在这里插入图片描述

  • 空间曲线在坐标面上的投影曲线方程

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    注意:投影曲线简称投影,而投影区域是投影曲线围成的区域。

  • 平面方程

    在这里插入图片描述
    在这里插入图片描述

  • 直线方程

    在这里插入图片描述

  • 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件

    在这里插入图片描述
    在这里插入图片描述
    (1)两平面垂直的充要条件是:法向量互相垂直。
    (2)两平面平行的充要条件是:法向量平行。
    (3)两直线垂直的充要条件是:方向向量垂直。
    (4)两直线平行的充要条件是:方向向量平行。
    (5)直线与平面平行的充要条件是:方向向量与法向量平行。
    (6)直线与平面垂直的充要条件是:方向向量与法向量垂直。

  • 点到平面和点到直线的距离

在这里插入图片描述
在这里插入图片描述在这里插入图片描述

补充

  • 平面束方程

    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值