向量代数和空间解析几何
本节大纲内容
考试要求
理解空间直角坐标系,理解向量的概念及其表示.
掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.
理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.
掌握平面方程和直线方程及其求法.
会求平面与平面、平面与直线、直线与直线之间的夹角.
会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.
会求点到直线以及点到平面的距离.
了解曲面方程和空间曲线方程的概念.
了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.
了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.
考试内容
-
向量的概念
-
向量的线性运算,向量的数量积和向量积
-
向量的混合积
定义:
设 a ,b 与 c 是三个向量,(a x b) · c 称为三个向量a,b,c的混合积,记作[a b c]或[a,b,c],即
[a b c] = (a x b) · c = | a x b| |c| cosβ
其中 β是向量 (a x b) 与 c 的夹角。
先向量积后数量级,最终结果是一个实数。三向量的混合积的几何意义:
它的绝对值 |(a x b) · c| 表示以a,b,c 为棱的平行六面体的体积。
根据右手定则,确定混合积的符号。如果[a b c] = 0,即平行六面体的体积为零,也就是说 a,b,c 共面。由此可知三向量共面的充要条件是三向量的混合积为零。
向量的混合积的运算性质:
(1)(a,b,c) = (b,c,a) = (c,a,b). // 注意本性质的顺序性
(2)(k a,b,c) = ( a,kb,c) = ( a,b,kc) = k( a,b,c).
(3)(a1+a2,b,c) = (a1,b,c) + (a2,b,c) -
两向量垂直、平行的条件
(1)两个非零向量a与b平行的充分必要条件是 a = βb.
(2)在坐标系下,两向量平行的充要条件是对应坐标成比例。
(3)两向量垂直的充要条件是两向量的数量积为零,即 a · b = 0。
(4)在坐标系下,两向量垂直的充要条件是用坐标运算等于零。
-
两向量的夹角
利用向量的数积即可计算。
-
向量的坐标表达式及其运算
-
单位向量
(1)基本单位向量:针对坐标系来说的,坐标系正向的单位化 。
(2)非零向量a的单化:
-
曲面方程和空间曲线方程的概念
建立了空间曲面及其方程的联系后,就可以通过研究方程来了解曲面的几何性质,与平面解析几何类似,空间解析几何主要研究两个基本问题:
为了讨论方便,先简单介绍平面的一般方程
空间中任一平面方程可以用三元一次方程
来表示,反之亦然。其中A,B,C是不全为零的常数。此方程称为平面的一般方程。特别地,xOy、yOz、xOz平面的方程是z = 0,x = 0,y = 0。而x = c,y = c,z = c分别表示平行于坐标面yOz、xOz、xOy的平面。
常见曲面
-
球面
-
柱面
-
旋转曲面
-
常用的二次曲面方程及其图形
点击下方常见曲面即可。
常见曲面
-
空间曲线的参数方程和一般方程
-
空间曲线在坐标面上的投影曲线方程
注意:投影曲线简称投影,而投影区域是投影曲线围成的区域。
-
平面方程
-
直线方程
-
平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件
(1)两平面垂直的充要条件是:法向量互相垂直。
(2)两平面平行的充要条件是:法向量平行。
(3)两直线垂直的充要条件是:方向向量垂直。
(4)两直线平行的充要条件是:方向向量平行。
(5)直线与平面平行的充要条件是:方向向量与法向量平行。
(6)直线与平面垂直的充要条件是:方向向量与法向量垂直。 -
点到平面和点到直线的距离