Focal Loss for Dense Object Detection阅读笔记1

本文探讨了目标检测算法中One-stage与Two-stage的区别,分析了One-stage算法精度较低的原因在于类别不平衡问题。提出了一种新的损失函数Focal Loss,用于解决易分类样本对训练的影响,通过在COCO数据集上的实验,证明了Focal Loss能有效提升One-stage算法RetinaNet的速度与精度。

      粗略地阅读了一下这篇论文,下面主要想讲述一下作者想解决的问题、该论文的主要贡献,并对文章中的一些生僻概念进行解释。

      目标检测算法一般分为两种:one-stage detector、two-stage detector。

Two-stage detector:

    该类算法讲检测问题分两步走,首先产生候选区域(region proposal),然后对候选区域进行分类。(region proposal是什么?)

One-stage detector:

    没有region proposal阶段,直接产生目标位置以及类别。(为什么可以没有region proposal阶段??)

    在目标检测算法中,一直存在一个现象,就是One-stage detector虽然快于Two-stage detector,但是其精度总是低于后者,作者指出该现象的原因是由于one-stage detector训练时类别不平衡导致的。Two-stage detector不存在类别不平衡现象,因为在Proposal stage能够迅速降低候选目标位置的数目到一个很小的数目,过滤掉大多数背景样本;在第二阶段(分类阶段)中,执行抽样启发式(sampling heuristics)来保持前景与背景比例的一个平衡,sampling heuristics有:固定前景与后景比、OHEM。Two-stage detector能够降低候选目标位置的数目,但是One-stage detector不行,它必须处理一组大得多的候选目标位置,虽然也可以采用类似于two-stage的抽样启发式(sampling heuristics)方法,但是由于在训练时主要以easy negative example为主,所以此方法不起作用(为什么不起作用????)。在目标检测的分类问题中,该问题通常通过boostrapping和hard example mining解决。

什么是easy negative example?

    一张图片有前景和背景,处在前景和背景的过渡区域是不容易分类的,完全处在背景上的区域是容易分类的,这种易分类的negative是easy negative。easy negative example由于分类明确,所以其分类的confidence很高,其loss很小,反向时梯度也很小,但是由于图片中easy negative example比较多,所以其loss就很大。

这篇文章想到解决的问题就是,首先,发现One-stage detector的精度比不上Two-stage detector的原因是类别不平衡;然后,提出解决类别不平衡的一个方法是重塑标准交叉熵损失函数,提出Focal Loss,以使得易分类样本对应的损失函数值的权重变小;最后,为了验证Focal Loss的实用性,作者写了一个One-stage detector算法——RetinaNet,该One-stage detector算法使用Focal Loss作为损失函数,在COCO数据集上进行测试,其速度和精度都超过当前最好的One-stage、Two-stage目标检测算法,证明了Focal Loss确实能够改善One-stage detector速度快但精度没有Two-stage detector高的现象。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值