【论文阅读笔记】Focal Loss for Dense Object Detection
(一)论文地址:
https://arxiv.org/pdf/1708.02002.pdf
(二)核心思想:
这篇论文中作者探究了 one-stage 方法准确率较低的原因,并提出了一个新的 Loss 函数——Focal Loss 来解决 one-stage 方法中正负样本不均衡的问题;并且作者由此设计了一个简单高效的网络
RetinaNet,既保留了 one-stage 的速度快的特点,又保证了更高的准确率;
(三)One-stage 方法的问题:
one-stage 方法(如 YOLO,SSD 等)在不同大小的特征图上,使用不同大小和比率的 anchors 进行密集采样;这种方法获得的预选框远远多于 two-stage 的方法,导致的一个问题就是绝大多数预选框都是负样本(背景类),以至于即使分类器将所有预选框都分成背景,传统分类使用的交叉熵 Loss 依然会很低;
而 two-stage 方法由于使用了 RPN 网络