【论文阅读笔记】RetinaNet:Focal Loss for Dense Object Detection

这篇论文介绍了RetinaNet网络,它采用Focal Loss来应对one-stage目标检测方法中的正负样本不平衡,提升了检测准确率。Focal Loss通过动态调整权重,使得分类器更加关注难例,从而改进了传统的交叉熵损失函数。实验结果显示,RetinaNet在保持速度优势的同时,显著提高了检测性能。
摘要由CSDN通过智能技术生成

(一)论文地址:

https://arxiv.org/pdf/1708.02002.pdf

(二)核心思想:

这篇论文中作者探究了 one-stage 方法准确率较低的原因,并提出了一个新的 Loss 函数——Focal Loss 来解决 one-stage 方法中正负样本不均衡的问题;并且作者由此设计了一个简单高效的网络
RetinaNet,既保留了 one-stage 的速度快的特点,又保证了更高的准确率;

(三)One-stage 方法的问题:

one-stage 方法(如 YOLO,SSD 等)在不同大小的特征图上,使用不同大小和比率的 anchors 进行密集采样;这种方法获得的预选框远远多于 two-stage 的方法,导致的一个问题就是绝大多数预选框都是负样本(背景类),以至于即使分类器将所有预选框都分成背景,传统分类使用的交叉熵 Loss 依然会很低;

而 two-stage 方法由于使用了 RPN 网络࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT可达鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值