donkeycar的keras网络的代码解析

本文深入解析DonkeyCar项目中使用的Keras神经网络架构,涵盖模型构建、训练过程及其实现细节,帮助读者理解自动驾驶小车的深度学习应用。
摘要由CSDN通过智能技术生成
""""

keras.py

functions to run and train autopilots using keras

"""

from tensorflow.python.keras.layers import Input
from tensorflow.python.keras.models import Model, load_model
from tensorflow.python.keras.layers import Convolution2D
from tensorflow.python.keras.layers import Dropout, Flatten, Dense
from tensorflow.python.keras.callbacks import ModelCheckpoint, EarlyStopping


class KerasPilot:

    def load(self, model_path):
        self.model = load_model(model_path)

    def shutdown(self):
        pass

    def train(self, train_gen, val_gen,
              saved_model_path, epochs=100, steps=100, train_split=0.8,
              verbose=1, min_delta=.0005, patience=5, use_early_stop=True):
        """
        train_gen: generator that yields an array of images an array of

        """

        """
        filename:字符串,保存模型的路径
        monitor:需要监视的值
        verbose:信息展示模式,0或1(checkpoint的保存信息,类似Epoch 00001: saving model to ...)
        save_best_only:当设置为True时,监测值有改进时才会保存当前的模型( the latest best model according to the quantity monitored will not be overwritten)
        mode:‘auto’,‘min’,‘max’之一,在save_best_only=True时决定性能最佳模型的评判准则,例如,当监测值为val_acc时,模式应为max,当监测值为val_loss时,模式应为min。在auto模式下,评价准则由被监测值的名字自动推断。
        save_weights_only:若设置为True,则只保存模型权重,否则将保存整个模型(包括模型结构,配置信息等)
        period:CheckPoint之间的间隔的epoch数
        """
        # checkpoint to save model after each epoch
        save_best = ModelCheckpoint(saved_model_path,
                                    monitor='val_loss',
                                    verbose=verbose,
                        
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值