机器学习【3】:RNN(循环神经网络),LSTM改进

本文介绍了RNN的工作原理、应用场景及其存在的梯度消失问题。接着详细讲解了LSTM如何通过遗忘门、输入门和输出门解决这一问题,以保持长期依赖。LSTM增加了额外的状态码C,能够筛选并保留重要信息。
摘要由CSDN通过智能技术生成

一. RNN

     1. RNN作用是什么?

         RNN是一种可以具有前后记忆的一种特殊的神经网络,它不仅考虑当前时刻的输入,而且赋予了网络对前面的内容的一种'记忆'功能.当前节点的输出是基于上一个节点的状态加上当前节点的输入。这样的神经网络是具有上下文关系对应的,后面的信息是基于前面的信息而得出的,几乎所有和时间序列有关的数据我们都可以用循环神经网络进行训练。

     2. RNN的应用

         之前已经说过:RNN的应用范围非常广泛,凡是考虑时间先后顺序的问题都可以使用RNN来解决,这里主要说一下几个常见的应用领域:

    ① 自然语言处理(NLP): 主要有视频处理, 文本生成, 语言模型, 图像处理

    ② 机器翻译, 机器写小说

    ③ 语音识别

    ④ 图像描述生成

    ⑤ 文本相似度计算

    ⑥ 音乐推荐、网易考拉商品推荐、Youtube视频推荐等新的应用领域。


    3. RNN模型

      

     上图是一个折叠起来的RNN,我们看看他展开之后是怎样。

   

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值