线性回归

线性回归:

简单描述就是通过线性方程(1次函数)去拟合数据点:

但是如何使用该线性方程去拟合数据点呢?我们能得到拟合的整体误差,即图中蓝色线段的长度总和。如果某一条直线对应的误差值最小,就代表这条直线最能反映数据点的分布趋势:

误差如何表示?在线性回归中,使用残差的平方和来表示所有样本点的误差(专业名称:平方损失函数):

如何求解上面的平方损失函数?使用最小二乘法即代数求解,最小二乘法是用于求解线性回归拟合参数 w 的一种常用方法。最小二乘法中的「二乘」代表平方,最小二乘也就是最小平方。而这里的平方就是指代上面的平方损失函数。

通过对f(损失函数)求一阶偏导等处理后,得到如下结果:

所以w0、w1代码表示为:

  def w_calculator(x, y):
      n = len(x)
      w1 = (n*sum(x*y) - sum(x)*sum(y))/(n*sum(x*x) - sum(x)*sum(x))
      w0 = (sum(x*x)*sum(y) - sum(x)*sum(x*y))/(n*sum(x*x)-sum(x)*sum(x))
      return w0, w1

通过scikit-learn可以实现最小二乘法线性回归:

sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=1)

  • fit_intercept: 默认为 True,计算截距项。(即模型中的常数)

  • normalize: 默认为 False,不针对数据进行标准化处理。

  • copy_X: 默认为 True,即使用数据的副本进行操作,防止影响原数据。

  • n_jobs: 计算时的作业数量。默认为 1,若为 -1 则使用全部 CPU 参与运算。

矩阵运算:

在实际的情况下,我们运算的很多数据集都是呈矩阵的形式,所以这就涉及到将其转换为矩阵的运算:

y(x,w) = XW

推导公式这里就不详说了,得到最终的矩阵公式:

W = (X^{T}X)^{-1}X^{T}Y

 

评价指标:

回归预测结果,通常会有平均绝对误差、平均绝对百分比误差、均方误差等多个指标进行评价

平均绝对误差(MAE)就是绝对误差的平均值,它的计算公式如下:

均方误差(MSE)它表示误差的平方的期望值,它的计算公式如下:

平均绝对百分比误差 (MAPE),如果 MAPE 为 55,则表示预测结果较真实结果平均偏离 5:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值