(十三)关于InternVL2.5的模型训练效果——自定义数据集的训练效果InternVL2.5与InternVL2.0对比

(十三)关于InternVL2.5的模型训练效果——自定义数据集的训练效果InternVL2.5与InternVL2.0对比


前言

本章节紧接前一章节的内容,前一章节介绍了InternVL2.5的训练方法,包括了官方提供的InternVL2.5相对于InternVL2.0的提升对比信息、InternVL2.0训练方法的结论验证以及如何训练InternVL2.5。本章节主要就是将上一节的训练结果进行展示并且与之前InternVL2.0相比较,内容量会比较少,下面来看看具体的数据结果吧。


一、InternVL2.0与InternVL2.5推理数据对比

说明
本次训练InternVL2.5所使用的训练数据、测试数据完全一样,包括训练策略也与之前章节《(五)关于InternVL2的模型训练二(如何训练目标定位模型)》一致。唯一有所不同的就是上一章节提到的,虽然InternVL2.5的存储大小相比InternVL2.0更小,但训练所需的显存更大,导致之前8批次训练的只能4批次训练。

InternVL2.0:
一共11518张图片,包括60个标签,每个标签数据量不一,从140到210不等。通过计算混淆矩阵得出每个类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值