nn.KLDivLoss

nn.KLDivLoss在PyTorch中的主要作用是衡量连续分布的距离,常用于label smoothing。它基于Kullback-Leibler散度,其中p(x)是真实分布,q(x)是预测分布。在计算时,通常使用LogSoftmax后的输出。正确使用方式是在PyTorch 1.3.1版本中,将reduce和size_average都设为False以获取每个样本的总损失。注意,KL散度不具备对称性,D(p||q)不等于D(q||p)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

KLDivLoss

作用:

     用于连续分布的距离度量;并且对离散采用的连续输出空间分布进行回归通常很有用;用label_smoothing就采用这个;

公式:

             

            

 

公式理解:

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值