fp16与fp32简介与试验

本文介绍了fp16和fp32数据类型的差异,探讨了为何在深度学习中使用fp16进行训练以节省内存和可能的加速效果。同时,文章指出了fp16训练中可能出现的溢出问题及其解决方案,如混合精度加速和损失放大技术。通过在1080Ti GPU上的实践,发现fp16能节省内存但并未观察到明显的计算加速,这需要Volta结构的GPU才能实现TensorCore加速。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

目录

一、fp16和fp32介绍

二、为什么应用fp16训练:

三、应用fp16存在问题

四、实践对比

引用:


一、fp16和fp32介绍

  • fp16是指采用2字节(16位)进行编码存储的一种数据类型;同理fp32是指采用4字节(32位);

  • 如上图,fp16第一位表示+-符号,接着5位表示指数,最后10位表示分数;
    • 公式:

    • 其中,sign位表示正负,exponent位表示指数(  ),fraction位表示的是分数(  )。其中当指数为零的时候,下图加号左边为0,其他情况为1。
    • 具体计算情况可分为下面三种:

    • Exp:

      <
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值