题目详情 - 7-94 出栈序列的合法性 (pintia.cn)
7-94 出栈序列的合法性
给定一个最大容量为 M 的堆栈,将 N 个数字按 1, 2, 3, …, N 的顺序入栈,允许按任何顺序出栈,则哪些数字序列是不可能得到的?例如给定 M=5、N=7,则我们有可能得到{ 1, 2, 3, 4, 5, 6, 7 },但不可能得到{ 3, 2, 1, 7, 5, 6, 4 }。
输入格式:
输入第一行给出 3 个不超过 1000 的正整数:M(堆栈最大容量)、N(入栈元素个数)、K(待检查的出栈序列个数)。最后 K 行,每行给出 N 个数字的出栈序列。所有同行数字以空格间隔。
输出格式:
对每一行出栈序列,如果其的确是有可能得到的合法序列,就在一行中输出YES
,否则输出NO
。
输入样例:
5 7 5
1 2 3 4 5 6 7
3 2 1 7 5 6 4
7 6 5 4 3 2 1
5 6 4 3 7 2 1
1 7 6 5 4 3 2
输出样例:
YES
NO
NO
YES
NO
核心:
出栈顺序 与 输出 这个 我深究不出来什么。。。。
围绕 等待入栈点(计为t) 分类 t 每次输出数据 data
1.data 大于 t t data 之间元素 都加入栈
2.data = t 入栈点t 进入后弹出
3.data < t 说明出来的 在栈里面的 t之前的都入栈了
三种情况分别处理即可
#include<bits/stdc++.h>
using namespace std;
int n,m,k;
bool Valid()
{
int t = 1;
bool si = true;//合法序列
stack<int> st;//存放入的点
for(int i = 0;i<n;i++)
{
int data;
cin>>data;
if(t<data) //情况1 入栈点 t < data
{
for(int i = t;i<= data;i++)
{
st.push(i);
}
t = data + 1;
if(st.size()>m)//如果 超过容量
{
si = false;
}
st.pop();
continue;
}
if(t == data)//情况2
{
t++;
continue;
}
if(t>data)//情况3
{
if(!st.empty()&&st.top() == data)
{
st.pop();
continue;
}else{
si = false;
}
}
}
return si;
}
int main()
{
cin>>m>>n>>k;
while(k--)
{
if(Valid()) printf("YES\n");
else{
printf("NO\n");
}
}
return 0;
}