Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 6925 Accepted Submission(s): 4232
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10 1 3 6 9 0 8 5 7 4 2
Sample Output
16题意:给出长度为n的数列,数列可以变形为:a1, a2, ..., an-1, an (where m = 0 - the initial seqence) a2, a3, ..., an, a1 (where m = 1) a3, a4, ..., an, a1, a2 (where m = 2) ... an, a1, a2, ..., an-1 (where m = n-1)在上面的数列中找逆序数最小的,并输出最小的逆序数思路:树状数组求逆序数。每加入一个数num[i](注意要将所有元素+1),新增的逆序数为已插入数组中的数-比num[i]小的数。先求出原始数列的逆序数,以后每把前面的一个元素移到后面,逆序数新增n-num[i]个,减少num[i]-1个。上代码:水波。#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; int ans[5010]; int op[5010]; int n; int getf(int x) { return x&(-x); } void add(int x) { while(x<=n) { ans[x]++; x += getf(x); } return ; } int getsum(int x) { int sum = 0; while(x>0) { sum += ans[x]; x -= getf(x); } return sum; } int main() { while(scanf("%d", &n) != EOF) { memset(ans, 0, sizeof(ans)); memset(op, 0, sizeof(op)); int sum = 0; int a; for(int i=1; i<=n; i++) { scanf("%d", &op[i]); op[i]++; add(op[i]); sum += getsum(n) - getsum(op[i]); } int minn = sum; int w; for(int i=1; i<=n; i++) { //Sum+=n-num[i]-(num[i]-1); sum += - op[i] + n + 1 - op[i]; minn = min( minn, sum); } printf("%d\n",minn); } return 0; }