文章目录
摘要
文章提出了一个新的参数变换——投影变换和相似变换结合。给定两张输入图片的投影变换,基于投影变换分析,该方法计算重叠区域的投影变换和非重叠区域都是平滑的,并且结果的扭曲会从投影到相似逐渐改变。这种变换加强了投影和相似变换。,当图片作为相似变换时的透视效果被保护时,投影变换有很好的拼接准确度。也可以和更先进的基于局部扭曲的配准方法APAP结合达到更高的准确度。在这种方法下,拼接图的视野会扩大,投影损失更少。(形状拉伸,大小更大)
1.介绍
图像拼接是一个把几张图片结合成一张视野范围更广泛大图的过程。为了鲁棒性更强,图像拼接问题被很好地解决通过全局参数扭曲,使图片拼接更准。全局扭曲的广泛选择包括相似性,仿射和投影变换。尽管它们的鲁棒性很强,但是全局扭曲对于所有类型的场景和运动并不是足够灵活。例如,投影扭曲只在平面场景或无视差相机运动情况下才能配准。
为了解决全局扭曲模型不充足问题和改善匹配的准确度,最近有几种局部扭曲模型被提出,例如SVA、APAP。为了更好的准确度,而不是依赖单一全局扭曲,这些方法在重叠区域采用多局部参数扭曲来解决拼接不准的问题。对于非重叠区域,投影(仿射)正则化平滑地推算图像重叠以外的变换