【图像拼接】论文精读:Learning Edge-Preserved Image Stitching from Large-Baseline Deep Homography

本文介绍了针对大基线图像拼接的深度学习方法,提出了一种融合特征金字塔与特征相关性的大基线深度单应性模块,解决了传统方法在大基线场景中易产生鬼影效应的问题。此外,设计了一个边缘保留的变形网络,以减少重影并保持拼接图像的边缘连续性。通过实验,该方法在单应性估计和图像拼接任务上优于现有方法,展示出良好的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值