逻辑回归知识梳理

一、逻辑回归与线性回归的联系与区别

什么是逻辑回归?
逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的。
逻辑回归和线性回归两者其实都是在预测值,但是Linear regression解决的是回归问题,输出是连续值;Logistic regression解决的是分类问题,输出的是离散值。

二、逻辑回归的原理

既然是分类,输出只能是固定的那么几类。所以如果我们要用线性回归解决一个分类问题,就需要有一个函数把连续值映射成离散值。这个函数就是logistics function,其中Sigmoid function就是一种常用的logistics function。 Sigmoid function,即下图中的g函数: 插图
二分类中,我们通常可以把两类分别用0和1表示,以z=0(即最终函数值为0.5)为决策边界。如果我们能找到合适的参数θ使得函数与数据差不多拟合,那么就可以实现逻辑回归了。

三、逻辑回归代价函数推导及优化

  1. 逻辑回归中的cost function
    逻辑回归中不能采用线性回归模型中的代价函数 插图,因为这样的话导致产生的代价函数是一个非凸函数,它有许多的局部最小值,这不利于我们用梯度下降法寻找全局最小解。
    我们重新定义逻辑回归的代价函数为:
    插图
  2. cost function(代价函数)的梯度下降优化
    在得到这样一个代价函数以后,我们便可以用梯度下降算法来求得能使代价函数最小的参数了。算法为:
    Reapeat { (simultaneously update all ) }
    求导后得到:
    Repeat { (simultaneously update all ) }
  3. 一些梯度下降算法之外的选择
    除了梯度下降算法以外,还有一些常被用来令代价函数最小的算法,这些算法更加复杂和优越,而且通常不需要人工选择学习率,通常比梯度下降算法要更加快速。这些算法有:共轭梯度(Conjugate Gradient),局部优化法(Broyden fletcher goldfarb shann,BFGS)和有限内存局部优化法(LBFGS)
  4. 注意!
    虽然得到的梯度下降算法表面上看上去与线性回归的梯度下降算法一样,但是这里的与线性回归中不同,所以实际上是不一样的。另外,在运行梯度下降算法之前,进行特征缩放依旧是非常必要的。

四、正则化与模型评估指标

  1. 正则化
    如果我们的hypothesis function(期望函数)出现了过拟合的问题,我们可以通过对hypothesis function加入正则项来避免过拟合。比较常用的正则化项有模型参数向量的范数,L1、L2等。

    线性回归中一个较为简单的能防止过拟合问题的假设:

    其中λ又称为正则化参数(Regularization Parameter)。 注:根据惯例,我们不对θ0 进行惩罚。
     
  2. 模型评估指标
    回归任务中,我们评估模型时用过MSE(均方误差)等指标,在分类任务中,我们用一下指标:
  • 2.1错误率与精度
    错误率是错误样本所占总数的比例;精度是正确样本所占的比例。
     
  • 2.2precision(查准率)、recall(查全率)和F1
    分类结果的混淆矩阵(Confusion matrix)由4种情形组成:TP(真正例)、FP(假正例)、TN(真反例)、FN(假反例)。

precision = TP/(TP+FP),所有预测是正例的样本中有多少真的是正例.
recall = TP/(TP+FN),所有的正例样本你预测对了多少。

precision和recall是一对矛盾的度量。常常一个比较高另一个就比较低。这样在比较两个学习器时就可能发生困难(一个precision好一个recall好),那怎么办呢?我们可以采用人为设定决策边界做出PR曲线,看谁面积大哪个学习器性能就比较好。
当然这个面积不太好算,所以我们采用F1作为一个precision和recall的综合度量。(P:precision; R:recall)

F1=2PR/(P+R)

如果客户对P或R中的某一个指标更在乎,可以设一个加权数β表示recall对precision的相对重要性。β>1时recall更重要;β<1时precision更重要:

Fβ=(1+β)PR/(p*β^2+R)

  • 2.3 ROC曲线 和 AUC
    很多学习器都是通过与一个分类阈值比较后判断类别。例如大于阈值的为正类,小于阈值为负类。
    如果我们减小这个阀值,更多的样本会被识别为正类,提高正类的识别率,但同时也会使得更多的负类被错误识别为正类。为了直观表示这一现象,引入ROC。在图中,横坐标为False Positive Rate(FPR假正率,所有实际为假的里面预测为真的个数),纵坐标为True Positive Rate(TPR真正例率,所有实际为真的预测出了多少真)。
    类似PR曲线,我们用AUC值(area under curve,即ROC曲线下的面积),来区分比较学习器的性能。

五、逻辑回归的优缺点

  1. 优点:
    1.1 可解释性,得出来的值可以解释为分类判断的概率。
    1.2 Logistic 回归是二分类任务的首选方法。
    1.3 非常容易实现,且训练起来很高效。因此也是一个很好的基准,你可以用它来衡量其他更复杂的算法的性能。
  2. 缺点:
    2.1 逻辑回归在不引入其他方法的情况下,只能处理线性可分的数据,因为它的决策面是线性的。
    2.2 很难处理数据不平衡的问题。举个例子:如果我们对于一个正负样本非常不平衡的问题比如正负样本比 10000:1.我们把所有样本都预测为正也能使损失函数的值比较小。但是作为一个分类器,它对正负样本的区分能力不会很好。

六、样本不均衡问题解决办法

  1. undersampling(欠采样):去除样例多的一类使正反数目相对接近。代表性算法:EasyEnsemble。
  2. oversampling(过采样):增加样例少的一类使之数目相对接近。代表性算法:smote过采样。
  3. threshold-moving(阈值移动):详见西瓜数p67.

七、sklearn参数

sklearn.linear_model.LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver=’liblinear’, max_iter=100, multi_class=’ovr’, verbose=0, warm_start=False, n_jobs=1)
  •  penalty(字符串类型):惩罚项,可选参数为'l1'和'l2',默认为'l2'。L1G规范假设的是模型的参数满足拉普拉斯分布,L2假设的模型参数满足高斯分布。
  • dual(布尔型):对偶或原始方法,默认为False。当样本数量>样本特征的时候,dual通常设置为False。用于liblinear解决器中L2正则化。
  • tol(浮点型):迭代终止判断的误差范围,float类型,默认为1e-4。
  • c(浮点型):正则化系数λ的倒数,float类型,默认为1.0。越小的数值表示越强的正则化。
  • fit_intercept(bool类型):指定是否应该向决策函数添加常量(即偏差或截距),默认为True。
  • interceptscaling:仅在正则化项为”liblinear”,且fitintercept设置为True时有用。float类型,默认为1。
  • class_weight:用于标示分类模型中各种类型的权重,默认为不输入,也就是不考虑权重,即为None。
  • random_state:随机数种子,默认为无,仅在正则化优化算法为sag,liblinear时有用。
  • solver:优化算法选择参数,只有五个可选参数,即newton-cg,lbfgs,liblinear,sag,saga。默认为liblinear。可根据数据和分类具体情况选择。‘liblinear’ 在优化问题中使用的算法。对于小数据集,‘liblinear’是一个不错的选择,但是’sag’和’saga’对于 大数据集 来说更快。对于 多类问题 ,只有’newton-cg’,‘sag’,'saga’和’lbfgs’处理多项损失; 'liblinear’仅限于 一对一休息方案。‘newton-cg’,'lbfgs’和’sag’只处理L2惩,而’liblinear’和’saga’处理L1惩罚。
  • max_iter(整型):算法收敛最大迭代次数,默认为100。
  • multi_class(字符串型):分类方式选择参数,可选参数为ovr和multinomial,默认为'ovr'。如果是二元逻辑回归,ovr和multinomial并没有任何区别,区别主要在多元逻辑回归上。多类选项可以是’ovr’或’multinomial’。 'ovr’是表示one-vs-rest,'multinomial’是表示many-vs-many。
  • verbose:日志冗长度,int类型。默认为0。就是不输出训练过程,1的时候偶尔输出结果,大于1,对于每个子模型都输出。
  • warm_start(布尔型):默认为False;当设置为True时,重用前一个调用的解决方案以适合初始化。否则,只擦除前一个解决方案。对liblinear解码器无效。
  • njobs:整型,默认是1;如果multiclass=‘ovr’ ,则为在类上并行时使用的CPU核数。无论是否指定了multi_class,当将’ solver ’ '设置为’liblinear’时,将忽略此参数。如果给定值为-1,则使用所有核。

返回值:
coef:权重向量。
intercept:b值。
n
iter_:实际迭代次数。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值